Preface

Preface

Imagine a scenario, if you will, where you're an intermediate-level developer, reasonably au fait with writing code, who feels that there should be more to developing jQuery than just punching keys into a text editor.
You'd be right; anyone can write code. To take that step towards being a more rounded developer, we must think further afield. Gone are the days of writing dozens of chained statements that take a degree to understand and debug, and in their place are the decisions that help us make smarter decisions about using jQuery and that make more effective use of time in our busy lives.
As an author, I maintain that simple solutions frequently work better than complex solutions; throughout this book, we'll take look at a variety of topics that will help develop your skills, make you consider all the options, and understand that there is more to writing jQuery code.
It's going to be a great journey, with more twists and turns than a detective novel; the question is, "Are you ready?" If the answer is yes, let's make a start…
What this book covers

Chapter 1, Installing jQuery, kicks off our journey into the world of mastering jQuery, where you will learn that there is more to downloading and installing jQuery than simply using CDN or local links. We'll take a look at how to install jQuery using package managers, how we can customize the elements of our download, as well as how to add source maps and more to help fine-tune our copy of the library.

Chapter 2, Customizing jQuery, takes things further—you may find that the elements of jQuery don't quite work the way you want. In this chapter, we'll take a look at how you can create and distribute patches that can be applied temporarily in order to extend or alter the core functionality within jQuery.

Chapter 3, Organizing Your Code, explores the use of jQuery design patterns, which is a useful concept in maintaining well-organized code that makes developing and debugging easier. We'll take a look at some examples of patterns and how they fit in with jQuery.

Chapter 4, Working with Forms, takes a look at the doyen of form functionality - validating responses on forms. We'll explore how you can be more effective at form validation, before using it to great effect in a contact form that employs AJAX, and develop a file upload form.

Chapter 5, Integrating AJAX, examines how we can improve the speed of loading data on static sites, with the use of callbacks to help manage multiple AJAX requests. We'll take a look at AJAX best practices and explore how best to manage these requests through the use of jQuery's Deferreds and Promises functionalities.

Chapter 6, Animating in jQuery, takes us on a journey to discover how we can be smarter at managing animations within jQuery, and explores how best to manage the jQuery queue to prevent animation build-ups. We'll also learn how we can implement custom animations and why jQuery isn't always the right tool to use in order to move elements on a page.

Chapter 7, Advanced Event Handling, examines how many developers may simply use .on() or .off() to handle events, but you'll see that there is more to using these methods, if you really want to take advantage of jQuery. We'll create a number of custom events before we explore the use of event delegation to better manage when these event handlers are called in our code.

Chapter 8, Using jQuery Effects, continues our journey, with a quick recap on using effects in jQuery, as we explore how we can create custom effects with callbacks and learn how to better manage the queue that forms the basis of their use within jQuery.

Chapter 9, Using the Web Performance APIs, starts the second part of the book, where we explore some of the more interesting options available to us when using jQuery. In this chapter, we'll discover how to use the Page Visibility API with jQuery and see how we can use it to provide a smoother appearance, reduce resources, and still maintain complex animations on our pages. Intrigued? You will be, when you visit this chapter!

Chapter 10, Manipulating Images, illustrates how, with the use of jQuery and some reasonably simple math, we can apply all kinds of effects to images. We can perform something as simple as blurring images to creating custom effects. We'll then use some of these techniques to create a simple signature page that exports images, and apply all kinds of effects to images extracted from your own webcam.

Chapter 11, Authoring Advanced Plugins, covers one of the key topics of using jQuery: creating and distributing plugins. With more and more functionality being moved to using plugins, we'll cover some of the tips and tricks behind creating your own plugins; you'll see that there is more to it than just writing code!

Chapter 12, Using jQuery with the Node-WebKit Project, explores an interesting library that takes the best elements of Node, JavaScript/jQuery, CSS, and plain HTML and combines them into something that blurs the boundaries between desktops and the online world. We'll work through some existing online code and convert it for use as a desktop application, before packaging it and making it available for download online.

Chapter 13, Enhancing Performance in jQuery, takes you through some of the considerations, tips, and tricks that you need to use in order to optimize and enhance the performance of your code. You'll see how easy it is to get the basics from DOM inspectors, such as Firebug, right through to automating your tests with Grunt, and finally developing a strategy to keep monitoring the performance of your code.

Chapter 14, Testing jQuery, is the concluding chapter in our journey through the world of mastering jQuery, where we will take a look at testing our code using QUnit and how we can take advantage of Grunt to automate an otherwise routine but important task within the world of developing with jQuery.

Patching the library on the run

Over the years, hundreds of developers have spent countless hours creating patches for jQuery, to either fix a bug of some description or provide new functionality within the library.
The usual route is to submit a pull request against the Core jQuery library for peer consideration. As long as the patch works as expected and does not cause issues elsewhere in the library, then it will be submitted to core.
The downside of this approach means that we're constrained by the release schedule for jQuery; while the developers do an outstanding job, it nevertheless can take time before a patch is committed to core.
Introducing monkey patching

What to do? Do we wait in the hope that our patch will be committed?
For some, this won't be an issue—for others, patience may not be their strongest virtue and waiting is the last thing they will want to do! Fortunately, we can get around this by using a method called monkey patching.
Now—before you ask—let me tell you that I'm not advocating any form of animal cruelty! Monkey patching, or duck punching as it is otherwise known, is a valid technique to create a patch that temporarily overrides the existing functionality within the jQuery Core library during runtime. Monkey patching comes with its risks: the primary one being that of clashing, should an update introduce a method or function of the same name within the library.
Note
Later in this chapter, we'll take a look at some of the risks that need to be considered.

That said, if monkey patching is used with care and forethought, it can be used to update functionality until a more permanent fix can be applied. It's time, I think, for a demo—we'll be taking a look at how we can improve animation support in jQuery, but first let's take a look at the basics of replacing or modifying the jQuery core at runtime.

Introducing Node-WebKit

Node-WebKit (or NW.js, as it is now known) was originally created by Intel but open sourced in 2011 and is available at http://nwjs.io/; the project is an attempt to combine the best of SPA development with an offline environment (where hosting a web server is not practical).
Node-WebKit is based on Chromium, a WebKit-based browser that has been extended in order to allow you to control user interface elements that are normally off-limits to web developers. The security model has been relaxed (on the basis that the code we're running is trusted) and that it integrates NodeJS; this opens up an array of possibilities, outside of what would normally be possible with HTML5 APIs.
At first, it may seem like a complicated mix. However, fear not as most finished solutions built in nothing more than plain HTML, CSS, and JavaScript, with a sprinkling of images to finish it off.
The basic principle, as we will see throughout this chapter, is to produce a normal site and then compress HTML, CSS, and all related resource files into one ZIP file. We simply rename it to have an .nw extension and then run the main nw.exe application. Provided that we've set up a requisite package.json file, it will automatically pick up our application and display it on the screen, as shown here:
[image: Introducing Node-WebKit]
Hold on though; this book is about jQuery, right? Yes, absolutely; here comes the best part: Node-WebKit allows you to run standard JavaScript and jQuery along with any Node third-party modules! This opens up a wide variety of opportunities; we can use the main library or any of a host of additional jQuery-based libraries, such as Three.js, AngularJS, or Ember.
Note
The only key part that we really have to remember is that there are some quirks of using NW.js, such as using a folder dialog to browse and select local folders; we will cover this in more detail later in this chapter.

At this point, I am sure you will be asking yourself one question: why would I want to use nw.js (or Node-WebKit)? This is a perfectly valid question; it might well seem illogical that we're running a web-based site as a desktop application! In this apparent madness, there are some valid reasons for doing this, so let's take a look at them now and see why it makes sense to run a site as a desktop application.
Operating HTML applications on a desktop

As developers, one of the biggest headaches we face is ensuring that users have the same experience across all the browsers that we need to support when accessing our site. Now, I should make it clear: in terms of the same experience, there may be instances where this simply isn't possible, so we have to at least provide a graceful exit path for those browsers that don't support a particular piece of functionality.
Thankfully, this concern is slowly but surely becoming less of an issue. The great thing about Node-WebKit is that we only have to support Chrome (as this is what Node-WebKit is based on).
In most cases, we can simply reuse the code created for Chrome; this allows us to easily push out cross-platform applications using frontend frameworks (including jQuery!) and Node modules that we already know or use. In addition to this, there are several reasons why you will use Node-WebKit to help produce cross-platform applications, as follows:
	Access to the latest web technologies available in Blink, the rendering engine behind Google Chrome.
	NW.js supports the build once, run anywhere concept—this may not suit all applications, but many will benefit from sharing code between the desktop, web, and mobile environments.
	If you want your app to run at a certain size or do some more advanced things with popups, you get this control on the desktop. Most solutions also provide a way to access the file system and allow other more advanced controls that you wouldn't get with a regular web application.

Without wanting to appear negative, there are some considerations that you need to be aware of; the principal concern is the size of the executable.
A site or an application created with native UI libraries, such as jQuery, may only be a few kilobytes in size. An equivalent version built using Node-WebKit will be significantly bigger, as it includes a cut-down version of Node and Chromium. It's for this reason that you need to be careful about file sizes—you can use some of the tips and tricks from Chapter 2, Customizing jQuery, to reduce the size of jQuery. There are a couple of other concerns that you need to be mindful of; they include the following:
	Compared to native applications, desktop web applications typically require a much larger amount of RAM and CPU power to run and render.
	In terms of appearance, if you want to make your application look good on the platform you're planning on deploying to, then you'll need to either recreate common UI elements using CSS or create a totally new UI, including a new design for every operating system-provided UI element, such as the title bar, menu bar, and context menus.
	Although Node-WebKit relaxes some of the security issues that are otherwise found when using browser applications (such as the same origin policy), you still only have access to the Node-WebKit context; and in some instances, you have to use WebKit-specific tags, such as nwdirectory, when creating a select directory dialog. The net effect means an increase in code, if you want to create one file that supports both web and desktop environments. You can mitigate against the effects of this issue: http://videlais.com/2014/08/23/lessons-learned-from-detecting-node-webkit/ provides a useful trick to determine which environment you are in and allows you to reference the appropriate files needed for that environment.

Note
For more information on some of the security considerations, take a look at the security page on the NW.js Wiki, available at https://github.com/nwjs/nw.js/wiki/Security.

Now that we've been introduced, let's delve in and get started with installing Node before we start building our jQuery-based application. It should be noted that the focus of this chapter will be largely based on Windows, as this is the platform that is used by the author; changes will need to be made for those using Linux or Mac platforms.

Designing an advanced plugin

Right – enough chitchat! Let's get down and dirty with some code! Over the next few pages, we're going to spend some time developing a plugin that displays some simple tooltips on a page.
Okay, before you all groan and say "not another tooltip plugin…!", there is a good reason for choosing this functionality. All will become clear once we've developed the first version of our plugin. Let's make a start - we'll begin with a brief look at creating our plugin:
	For this demo, we'll need the entire code folder for this chapter from the code download that accompanies this book. Go ahead and extract it, saving it to our project area.
	In the folder, run the tooltipv1.html file, which contains a grid of six images, along with some dummy text. Hover over the images in turn. If all is well, it will show a tooltip:[image: Designing an advanced plugin]

At this point you're probably wondering how all the code hangs together. It's a valid question…but we're going to break with tradition, and not examine it. Instead, I want to concentrate on redesigning the code to use boilerplate formatting, which will help make it easier to read, debug, and extend in the future. Let's consider what this means for our plugin.
Rebuilding our plugin using boilerplate

Hands up if you've not heard of boilerplating? Chances are that you may or may not have come across such examples as Bootstrap (http://www.getbootstrap.com), or even HTML5 Boilerplate (https://html5boilerplate.com/). To help you get familiar with the term, it is based on a simple idea of using a template to help structure code. It doesn't mean that it will write it for us (shame – we could earn millions for doing nothing, chuckle!), but it helps to save time by reusing a framework to rapidly develop code, such as full websites or even jQuery plugins.
For our next demo, we're going to rework our plugin using the jQuery Boilerplate templates available from https://github.com/jquery-boilerplate/jquery-patterns. As is often the case with the Internet, some kind soul has already created a good example of a tooltip using this technique, so we'll adapt it for our needs.
Tip
If you are interested in learning more about the jQuery Boilerplate plugin pattern, you may like to look at Instant jQuery Boilerplate for Plugins, by Jonathan Fielding, available from Packt Publishing.

The plugin example we'll use is by Julien G, a French web developer. The original is available via JSFiddle at http://jsfiddle.net/molokoloco/DzYdE/.
	Let's start (as always), by extracting a copy of the code folder for this chapter from the code download for this book. If you already have it from the previous exercise, then we can use that instead.
	Navigate to the version 2 folder, then preview tooltipv2.html in a browser. If all is well, we should see the same set of images as in the previous example, with the same styling applied for the tooltips.

At face value, it would seem that nothing has changed – this in itself is actually a good indicator of success! The real changes though are in tooltipv2.js, within the js subfolder under the version 2 folder. Let's go through this step by step, beginning with declaring variables:
	We start with declaring properties for the jQuery, document, window, and undefined. You might ask why we are passing in undefined – it's an excellent question: this property is mutable (meaning it can be changed). Although it was made non-writable in ECMAScript 5, not using it in our code means it can remain undefined and prevent malicious code attempts. Passing the remaining three properties makes it quicker to reference within our code:(function($, window, document, undefined) {
 var pluginName = 'tooltip', debug = false;

	Next up, the internal methods. We're creating them as methods within the internal object; the first takes care of positioning the tooltip on screen, while show and hide controls the visibility of the tooltip:var internal = {
 reposition: function(event) {
 var mousex = event.pageX, mousey = event.pageY;

 $(this)
 .data(pluginName)['tooltip']
 .css({top: mousey + 'px', left: mousex + 'px'});
 },

 show: function(event) {
 if (debug) console.log(pluginName + '.show()');
 var $this = $(this), data = $this.data(pluginName);

 data['tooltip'].stop(true, true).fadeIn(600);
 $this.on('mousemove.' + pluginName, internal.reposition);
 },

 hide: function(event) {
 if (debug) console.log(pluginName + '.hide()');
 var $this = $(this), data = $this.data(pluginName);
 $this.off('mousemove.' + pluginName, internal.reposition);
 data['tooltip'].stop(true, true).fadeOut(400);
 }
};

	We move on to the external methods. Up first from within the external object, comes the init function, to initialize our plugin and render it on screen. We then call the internal.show and internal.hide internal methods when moving over an element with an instance of the .tooltip class:var external = {
 init: function(options) {
 if (debug) console.log(pluginName + '.init()');

 options = $.extend(
 true, {},
 $.fn[pluginName].defaults,
 typeof options == 'object' && options
);

 return this.each(function() {
 var $this = $(this), data = $this.data(pluginName);
 if (data) return;

 var title = $this.attr('title');
 if (!title) return;
 var $tooltip = $('<div />', {
 class: options.class,
 text: title
 }).appendTo('body').hide();

 var data = {
 tooltip: $tooltip,
 options: options,
 title: title
 };

 $this.data(pluginName, data)
 .attr('title', '')
 .on('mouseenter.' + pluginName, internal.show)
 .on('mouseleave.' + pluginName, internal.hide);
 });
 },

	The second external method handles the updating of the tooltip text, using the .data() method: update: function(content) {
 if (debug) console.log(pluginName + '.update(content)', content);
 return this.each(function() {
 var $this = $(this), data = $this.data(pluginName);
 if (!data) return;
 data['tooltip'].html(content);
 });
 },

	We round up the methods available in our plugin with a destroy() handler. This stops a selected tooltip from displaying, and removes the element from code: destroy: function() {
 if (debug) console.log(pluginName + '.destroy()');

 return this.each(function() {
 var $this = $(this), data = $this.data(pluginName);
 if (!data) return;

 $this.attr('title', data['title']).off('.' + pluginName)
 .removeData(pluginName);
 data['tooltip'].remove();
 });
 }
 };

	Last, but by no means least is our plugin initiator. This function simply maps method names to valid functions in our plugin, or degrades gracefully if they don't exist:$.fn[pluginName] = function(method) {
 if (external[method]) return external[method]
 apply(this, Array.prototype.slice.call(arguments, 1));
 else if ($.type(method) === 'object' || !method)
 return external.init.apply(this, arguments);
 else $.error('Method ' + method + ' does not exist on
 jQuery.' + pluginName + '.js');
};
 $.fn[pluginName].defaults = {
 class: pluginName + 'Element'
 };
})(window.jQuery);

The key takeaway though from this demo is not the specific functions that we can use, but the format used to produce our plugin.
Anyone can write code, but use of a boilerplate pattern such as the one we've used here will help improve readability, make it easier to debug, and increase opportunities when extending or upgrading functionality at a later date. Remember, if you write a plugin and don't revisit it for a period of time (say 6 months); then the acid test is how much you can work out from the well-structured code, without needing lots of documentation. If you can't do that, then you need to revisit your coding!
Let's move on. Remember when I mentioned there was a good reason for choosing to use a tooltip plugin as the basis for our examples? It's time to reveal why…

Chapter 4. Working with Forms

How many times have you bought products online, from outlets such as Amazon? I bet the answer is a fair few times over the years—after all, you can't go into a bookstore late at night, peruse the books, and make a choice, without worrying about the store's closing time or knowing whether you will find a particular book.
Building forms for online sites is arguably one of the key areas where you are likely to use jQuery; the key to its success is ensuring that it validates correctly, as a part of offering a successful user experience.
Throughout this chapter, we're going to go back to the basics a little and delve into some of the techniques that we can use to validate forms, using a mix of HTML and jQuery validation tricks. You'll also see that creating successful forms does not require a lot of complex code, but that the process is equally about ensuring that we have considered the form's functionality requirements at the same time.
Over the next few pages, we'll cover a number of topics, as follows:
	Exploring the need for validation
	Adding form validation using regular expressions
	Developing a plugin architecture for validation
	Creating an advanced contact form using jQuery/AJAX
	Developing an advanced file upload form using jQuery

Are you ready to get started? Let's get going…before we start though, I recommend that you create a project folder. For the purpose of this chapter, I will assume that you have done so and that it is called forms.
Exploring the need for form validation

There are different ways to improve the usability of a form, but validation is arguably one of the most important facets that we should consider. How many times have you visited a site and filled in your details only to be told that there is a problem? Sounds familiar, right?
Validating a form is key to maintaining the consistency of information; the form will process the information that has been entered in order to ensure that it is correct. Take an example of the following scenarios:
	If an e-mail address is entered, let's make sure it has a valid format. The e-mail address should include a full stop and contain an @ symbol somewhere in the address.
	Calling someone? What country are they in? Let's make sure that the phone number follows the right format, if we've already set the form to show a specific format of the fields for a chosen country.

I think you get the idea. Now, this might sound as if we're stating the obvious here (and no, I've not lost my marbles!), but all too often, form validation is left until the last stage of a project. The most common errors are usually due to the following reasons:
	Formatting: This is where an end user has entered illegal characters in a field, such as a space in an e-mail address.
	Missing required field: How many times have you filled out a form, only to find that you've not entered information in a field that is obligatory?
	Matching error: This crops up when two fields need to match but don't; a classic example is a password or an email field.

At this stage, you're probably thinking that we're going to get stuck with lots of jQuery, to produce an all-singing, all-dancing solution, right?
Wrong! Sorry to disappoint you, but one mantra I always stick to is the KISS principle, or Keep It Simple, Stupid! This is not meant as a reflection on anyone, but it is just a way to make our designing lives a little easier. As I've mentioned in an earlier chapter, I believe mastering a technology such as jQuery is not always about the code we produce!
These are the key elements in form validation:
	Tell the user that they have a problem on the form
	Show the user where the problem is
	Show them an example of what you're expecting to see (such as an e-mail address)

Over the next few pages, we're going to take a look at how to add validation to a form and how we can reduce (or eliminate) the most common errors. We'll also work on the use of colors and proximity to help reinforce our messages. However, before we can validate, we need something to validate, so let's knock up a quick form as a basis for our exercises.

Using jQuery to validate our forms

In some cases, using HTML5 validation will fail if an input type used is not supported in that browser; this is the time when we need to revert to using JavaScript, or in this case jQuery. For example, date as an input type is not supported in IE11, as shown here:
<input type="date" name="dob"/>

This is how the preceding code will be rendered:
<input type="text" name="dob"/>

The trouble is that with the type falling back to text, browsers will not correctly validate the field. To get around this, we can implement a check using jQuery—we can then start adding some basic validation using jQuery, which will override the existing native HTML checks made in the browser.
Let's take a look at how we can achieve some of this in practice, with a simple demo, as follows:
	Open up a copy of basicform.html from the code download that accompanies this book.
	In the <head> section, add a link to jQuery along with a link to your validation script:<script src="js/jquery.js"></script>
<script src="js/basicvalidation.js"></script>

	Save the file as basicvalidation.html. In a new file, add the following code—this performs a check to ensure that you are only validating the email field:$(document).ready(function () {
 var emailField = $("#email");
 if (emailField.is("input") && emailField.prop("type") === "email") {
 }
});

	Immediately before the closing }), let's add in the first of two functions; the first function will add a CSS hook to allow you to style in the event of a success or failure:emailField.on("change", function(e) {
 emailField[0].checkValidity();
 if (!e.target.validity.valid) {
 $(this).removeClass("success").addClass("error")
 } else {
 $(this).removeClass("error").addClass("success")
 }
});

	The keen-eyed amongst you will spot the addition of two CSS style classes; we need to allow this in our style sheet, so go ahead and add these lines of code:.error { color: #f00; }
.success { color: #060; }

	We can now add the section function, which alters the default message shown by the browser to show custom text:emailField.on("invalid", function(e) {
 e.target.setCustomValidity("");
 if (!e.target.validity.valid) {
 e.target.setCustomValidity("I need to see an email address
 here, not what you've typed!");
}
else {
 e.target.setCustomValidity("");
}
});

	Save the file as basicvalidation.js. If you now run the demo in a browser, you can see that the text changes to green when you add a valid e-mail address, as shown in this screenshot:[image: Using jQuery to validate our forms]

	If you refresh your browser session and don't add an e-mail address this time, you will get a custom e-mail address error instead of the standard one offered by the browser, as shown in the following screenshot:[image: Using jQuery to validate our forms]

Using a little jQuery in this instance has allowed us to customize the message shown—it's a good opportunity to use something a little more user friendly. Note that the default messages given with standard HTML5 validation can be easily…improved!
Now that you've seen how we can change the message that is displayed, let's focus on improving the checks that the form makes. The standard HTML5 validation checks won't be enough for all instances; we can improve them by incorporating checks using regex checks in our code.

Working out unused JavaScript

So far, we've seen how we can easily minify code without any effort – but what if minifying isn't enough, and we need to remove redundant code?
Well, we can manually eyeball the code – nothing wrong with that. It's a perfectly acceptable way of working out what we can remove. The key thing though is that it is a manual process, which requires a lot of time and effort – not to mention the frequent attempts to find code that we can remove without breaking something else!
A smarter move is to set Node to work out for us what is being used, and what could be safely dropped. The web performance expert Gaël Métais has created unused JS to help with this. It works with Node, and is available at https://www.npmjs.com/package/unusedjs. It's a work in progress, but as long as it is used as a guideline, it can produce a useful basis for us to work out where we can make changes.
Let's take a moment to dig in and see how it works. For this demo, we'll use the Tooltip plugin demo we created in Chapter 12, Using jQuery with the Node-WebKit Project.
[image: Working out unused JavaScript]
There are a few things that we need to bear in mind when using this functionality:
	At the time of writing, the status of this plugin is still very much alpha – the usual risks around using alpha software apply! It is not perfect; it should be used as a guideline only, and at your own risk. It doesn't work well with really long scripts (such as the jQuery UI library), but will manage around 2,500-3000 lines.
	You will need to clear your browsing history, so don't go and use it in a browser where maintaining history is important.
	The plugin uses Node. If you don't have this installed, then head over to the Node site at http://www.nodejs.org to download and install the version appropriate for your platform.
	We also need to use a local web server such as WAMP (for PC – http://www.wampserver.com/de or http://www.wampserver.com/en/), or MAMP (for Mac – http://www.mamp.info) for the demo. Make sure you have something set up and configured for use.

Assuming we have Node and a local web server installed and configured for use, let's start with setting the unusedjs script. We will use Firefox for the purpose of running the demo, so adjust accordingly if you prefer to use a different browser. Let's begin:
	We need to start somewhere. The first step is to install unusedjs. Run the following command at the NodeJS prompt:
npm install unusedjs -g

	Start the server by writing the following in your console:
unused-js-proxy

	Click on the three bar icon and then Options, to show the options dialog. Make sure the following entries are set as shown in this next image:[image: Working out unused JavaScript]

	Make sure the No Proxy field is empty. Then click OK to confirm the settings.
	Next, we need to clear the cache in the browser session. This is critical, as we will likely get skewed results if the cache is not cleared.
	At this stage, open a copy of tooltipv2.html from the code download that accompanies this book, and wait until the page is fully loaded.
	Press F12 to display Firefox's console, and enter the following at the prompt:
_unusedjs.report()

	If all is well, we should see something akin to the following screenshot, when viewing the console results:[image: Working out unused JavaScript]

Try entering _unusedjs.file(2) in the console. This function shows a copy of the code, with unused sections highlighted in red, as shown in this screenshot:
[image: Working out unused JavaScript]
We can now concentrate on the highlighted sections to remove redundant code from our own scripts. How much will of course depend on our own requirements, and whether redundant code will later be used as part of any forthcoming changes to our work.
Tip
It goes without saying that we can't simply yank out code from a library such as jQuery. We would need to build a custom version of jQuery – we covered this in detail in Chapter 1, Installing jQuery.

Now that we've established our baseline, and worked out if any of our scripts contain unused code, it's time to look at optimizing it. Let's take a look at some of the tips and tricks we can use in our code; as a basis for embedding best practice into our normal development workflow.

Creating a basic form

As with all projects, we need to start somewhere; in this instance, we need a form that we can use as a basis for adding validation from the various examples given in this chapter.
In the code download that accompanies this book, look for and extract the basicform.html and basicform.css files to your project folder; when you run basicform.html, it will look something similar to this screenshot:
[image: Creating a basic form]
If we take a look at the markup used, we can see that it isn't anything new; it contains standard HTML5 fields that we will use when creating contact forms, such as text fields or text areas:
<form class="contact_form" action="" method="post" name="contact_form">

 <label for="name">Name:</label>
 <input type="text" name="username" required>

 <label for="name">Email:</label>
 <input type="email" name="email" required>

 <button class="submit" type="submit">Submit Form</button>
</form>

The key thing here though is that our example doesn't contain any form of validation—it leaves us wide open to abuse of the rubbish in, rubbish out, where users can enter anything and we receive submitted forms that are—well—rubbish! In this instance, when you click on Submit, all that you'll see is this screenshot:
[image: Creating a basic form]
Not great, is it? Most desktop browsers will accept any content if the required tag is used without some of the validation—as long as it has something, the form will be submitted. The exception to this rule is Safari, which won't display the pop-up notice shown in our screenshot.
I'm sure we can do better, but probably not the way you're expecting to see…intrigued?

Chapter 14. Testing jQuery

To test or not to test, that's the question…
To paraphrase that world-famous detective, the answer to this question should be elementary!
If you've spent any time with jQuery, you will no doubt be aware of its unit: the need to test code, and that the most popular way is to use its testing library, QUnit. Throughout this chapter, we'll recap how to use it and then look at some of the best practices we should use as well as explore how we can really cut down our workflow effort, by automating the tests we perform on our code.
In this chapter, we'll cover the following topics:
	Revisiting QUnit
	Automated testing using NodeJS and RequireJS
	Best practices when using QUnit

Are you ready to get stuck in? Let's get started…
Revisiting QUnit

Testing any code is vital to the successful construction of any online application or site; after all, it goes without saying that we don't want bugs appearing in the end result, right?
Tests can be performed manually, but there is an increased risk of the human factor, where we can't always be sure that the tests were performed 100 percent identically. To reduce (or even eliminate) this risk, we can automate tests using jQuery's unit testing suite, QUnit. We can, of course, run the QUnit tests manually, but the beauty of QUnit is that it can be completely automated, as we will see later in this chapter.
For now, let's take a moment to recap the basics of how to get QUnit installed and run some basic tests.
Installing QUnit

There are three ways to install QUnit. We can simply include the two links to it in our code, using the JavaScript and CSS files available at https://qunitjs.com. These can be referenced directly, as they are hosted on QUnit's CDN links that are provided by MaxCDN.
The alternative is to use NodeJS. To do this, we can browse to the NodeJS site at http://www.nodejs.org, download the appropriate version for our platform, and then run this command on the NodeJS command prompt:

npm install --save-dev qunitjs

We can even use Bower to install QUnit; to do so, we need to first install NodeJS and then run this command to install Bower:

npm install -g bower

Once Bower is installed, QUnit can then be installed with this command:

bower install --save-dev qunit

At this stage, we're ready to start creating our automation tests with QUnit.
Note
If you want to really push the boat out, you can test the latest committed version of QUnit—the links are available at http://code.jquery.com/qunit/; it should be noted that this is not for production use!

Creating a simple demo

Now that we have QUnit installed, we're ready to run a simple test. To prove that it's working, we're going to modify a simple demo in order to test for the number of letters in a textbox and indicate whether it is above or below a given limit, as follows:
	We'll start by extracting copies of the code required for our demo from the code download that accompanies this book; go ahead and extract the qunit.html file along with the css and js folders and store these in your project area:[image: Creating a simple demo]
Tip
Don't worry about the presence of the node_modules folder; we will be creating this later in the chapter, when Node is installed.

	We now need to modify our test markup, so go ahead and open up qunit.html and then modify it, as indicated:<!DOCTYPE html>
<html>
 <head>
 <title>Testing jQuery With QUnit</title>
 <meta charset="utf-8">
 <link rel="stylesheet" href="css/qunit.css" />
 <link rel="stylesheet" href="css/qunittest.css" />
 <script src="js/jquery.min.js"></script>
 <script src="js/qunit.js"></script>
 <script src="js/qunittest.js"></script>
 </head>
 <body>
 <form id="form1">
 <input type="text" id="textLength">

 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
 </form>
 </body>
</html>

	Next, open up a text editor of your choice and add the following code, saving it as qunittest.js in the js folder. The first block performs a check on the length of the text field and displays a count; it turns the background of that count red if it is over the prescribed length of eight characters:$(document).ready(function() {
 var txt = $("input[id$=textLength]");
 var span = $("#results");
 $(txt).keyup(function() {
 var length = $(txt).val().length;
 $(span).text(length + " characters long");
 $(span).css("background-color", length >= 8 ? "#FF0000" : "#00FF00");
 });

	Add these lines of code immediately below the previous block; this calls QUnit to test for the length of our text field and displays the results below the letter count: $(txt).val("Hello World!");
 QUnit.test("Number of characters in text field is 8 or more", function(assert) {
 $(txt).trigger("keyup");
 assert.ok($(txt).val().length >= 8, "There are " + $(txt).val().length + " characters.");
 });
});

	With the files in place, we're ready to run the tests; go ahead and run qunit.html in a browser. If all went well, we should see the results of our test, which in this instance will show a pass:[image: Creating a simple demo]

	Not every test that we perform in real life will be successful; there will be occasions when our tests fail, if we've not provided the right values or performed a calculation that gives an unexpected result. To see how this looks in QUnit, go ahead and add these lines to the qunittest.js file, as shown here: assert.ok($(txt).val().length >= 8, "There are " + $(txt).val().length + " characters.");
});

 $(txt).val("Hello World!");
 QUnit.test("Number of characters in text field is 8 or less", function(assert) {
 $(txt).trigger("keyup");
 assert.ok($(txt).val().length <= 8, "There are " + $(txt).val().length + " characters.");
 });

	Now, refresh your browser window; this time around, you should see the tests completed but with one failure, as shown in the following screenshot:[image: Creating a simple demo]

Note
There is a completed version of this example in the code download, in the completed version folder, which explores the outcome of the tests.

Although this was designed as a simple demo, it nevertheless highlights how easy it is to create simple tests that give the appropriate responses; let's pause for a moment to consider what we have covered in this exercise.
The key to each test lies in the use of the assert.ok() function—this performs a simple Boolean check. In our examples, we check whether the text length is 8 characters or less or 8 characters or more and either show pass or fail depending on the outcome. Additionally, we can either ask QUnit to show a standard text or override it with a personalized message. This approach should be sufficient to get started with unit testing your code; as time progresses, we can always develop the tests further, if desired.
The beauty of this library is that we can use it with either jQuery or JavaScript; our examples in this chapter are naturally based around using the former, but QUnit is flexible enough to work with the latter, should we decide to move away from using jQuery in the future. QUnit is part of the jQuery family of products; there are similarities to other simple testing libraries, such as JUnit (available at http://junit.org/).
There is a huge amount that we can do when we harness the power of QUnit—what we've seen here only scratches the surface of what is possible to achieve.
Note
If you want to learn more about the basics of QUnit, then I suggest that you refer to Instant Testing with QUnit, Dmitry Sheiko, available from Packt Publishing. There are lots of tutorials available online too; you can try this one, as a starting point: http://code.tutsplus.com/tutorials/how-to-test-your-javascript-code-with-QUnit--net-9077.

As a taster of what is possible, we will focus on one particular feature that will help you to take your jQuery development skills further: instead of running the tests manually each time, how about automating them completely so that they run automatically?

Installing and building our first application

I wonder: how many times have you read books or online articles about a programming language, which provide their own take on the ubiquitous "Hello World" example? I'll bet it must be quite a few times over the years…and yes, before you ask, we're not going to break the tradition either! Following in the footsteps of anyone who has provided "Hello World" examples, here's our own take.
[image: Installing and building our first application]
To build this, we need to do the following:
	Browse to http://nwjs.io/ and download the package for your platform; we will assume the use of Windows for now, but packages are available for Mac and Linux platforms as well.
	Extract the node-webkit-vX.XX.XX-win-x64 folder (where XX is the version number), rename it as nodewebkit, and copy it to your main PC drive—Linux or Mac users can copy this folder to their user areas. Once done, create a new folder called development within the nodewebkit folder.
	Next up, we need to install NodeJS. To do this, head over to http://nodejs.org/download/ in order to download and install a version suitable for your platform, accepting all the defaults.

Node-WebKit can use any of the standard Node packages available. As an example, we're going to install the markdown package, which converts suitably marked up plain text to valid HTML. Let's continue the exercise by installing it and seeing how it works:
	In the NodeJS command prompt, change to the helloworld folder and then enter the following code and press Enter:
npm install markdown

[image: Installing and building our first application]

	Close the window as you don't need it. Next, extract a copy of the index.html and package.json files from the helloWorld folder in the code download that accompanies this book; save these in the helloWorld folder in your project area.
	Create a new ZIP folder called helloWorld.zip and then add these two files to it; rename helloWorld.zip to helloWorld.nw.

We can now run our application; there are three ways to do this with Node-WebKit:
	In the NodeJS command prompt, switch to the nodewebkit folder and then run the following command:
nw C:\nodewebkit\development\helloWorld.nw

	Double-click on the nw.exe application; this will pick up the package.json file and run the helloworld.nw file automatically
	Drag and drop the helloworld.nw file onto nw.exe to run the application

Whichever route you prefer to use, running it will show the Hello World window shown at the start of this exercise. It's a simple, no-frills example of using Node-WebKit—granted it won't win any awards, but it shows how simple it is to create a functional application from existing HTML pages.
Dissecting the package.json file

At the heart of our application is the package.json file. This manifest file tells Node-WebKit how to open the application and controls how the browser should behave:
[image: Dissecting the package.json file]
It's worth getting to know this file in detail; it holds all the metadata for the project and follows the standard format for all Node-based packages. If you're not familiar with the manifest file, you can see a detailed example at http://browsenpm.org/package.json with interactive explanations for each section; Node-WebKit's version works in a similar fashion.
Note
For more in-depth details about the Node-WebKit manifest file and the components that make it up, head over to the documentation on the main NW.js site (https://github.com/nwjs/nw.js/wiki/manifest-format).

Right, it's time to get stuck in and build our example application!

Replacing or modifying existing behaviors

So, how can we effect a (temporary) change in the core functionality of jQuery?
It all starts with the use of an Immediately Invoked Function Expression (IIFE); we then simply save a version of the original function before overriding it with our new function.
Note
You may have heard the term self-executing anonymous function being used; it is a misleading phrase, although it means the same thing as an IIFE, which is a more accurate description.

Let's see what the basic framework looks like in action:
(function($){
 // store original reference to the method
 var _old = $.fn.method;
 $.fn.method = function(arg1,arg2){
 if (... condition ...) {
 return
 }
 else { // do the default
 return _old.apply(this,arguments);
 }
 };
})(jQuery);

If you were expecting something more complex, then I am sorry to disappoint you; there isn't a great deal of complexity required for a basic monkey patch! The extent of what goes into a patch will really come down to what it is that you are trying to fix or alter within the existing code.
To prove that this really is all that is required, let's take a look at an (albeit over-simplified) example. In the example, we'll use a standard click handler to show the response that a dog will give to its owner…except that our dog seems to have developed a personality problem.

Adding filters using CSS3

Filter support has been available for some time, at least within the major desktop browsers, although we still need to use the -webkit- vendor prefix support, as we are not yet entirely prefix free:
[image: Adding filters using CSS3]
Note
Information about the preceding image is taken from the CanIUse website, at http://caniuse.com/#feat=css-filters.

The beauty about using these methods is that they are very simple to apply; we're not forced to spend hours reworking images if clients decide to change their minds! We can apply and remove the styles using jQuery with ease, which helps keep the styles separate from our markup.
Manipulating images can get very complex – in fact, to cover the math involved, we could probably fill a book in its own right! Instead, we'll begin with a simple recap of using CSS3 filters, before moving onto creating more complex filters, and finishing with a couple of demos that help capture images from two unlikely sources.
Intrigued? All will become clear towards the end of this chapter, but we will first begin with a simple exercise to reacquaint ourselves with applying CSS3 filters.
Getting ready

Before we get stuck into our exercises, I would strongly recommend using Firefox or IE for these demos; if you use Chrome, then some of the demos will show Cross-Origin errors if run locally.
A good example is the cross-platform application XAMPP (available from http://www.apachefriends.org), or you can try WAMPServer (for PC, from http://www.wampserver.com/en), or MAMP (for Mac, from http://www.mamp.info). I will assume that you are running the demos from within a web server.

Creating our base page

In our first demo for this chapter, we're going to start with a simple recap of using the addClass method to apply a specific filter to an image on the page. We'll be using the Polaroid effect, developed by the Canadian developer Nick La, and available from http://webdesignerwall.com/demo/decorative-gallery-2/. The .addClass() method is something you will almost certainly have used countless times before; we're using it here as an introduction to more complex effects later in this chapter. Let's begin:
	Let's start by downloading and extracting the following files from the code download that accompanies this book:	cssfilters.html
	cssfilters.css
	jquery.min.js
	cssfilters.js

	Drop the HTML markup file into the root of our project area, and the JavaScript and CSS files into the relevant subfolders in our project area.
	In a new file, go ahead and add the following simple block of code – this is the event handler for the button, which we will use to change the filter state:$(document).ready(function(){
 $("input").on("click", function(){
 $("img").toggleClass("change-filter");
 })
});

	At this stage, try previewing the results in a browser. If all is well, we should see a picture of blue flowers, set in a Polaroid effect background. Refer to the following image:[image: Creating our base page]

	Take a closer look in cssfilters.css – near the bottom of the screen. We should see the following:.change-filter {
 filter: blur(5px);
 -webkit-filter: blur(5px);
}

This is immediately followed by this block:
img { -webkit-transition: all 0.7s ease-in-out; transition: all 0.7s ease-in-out; }

	Now click on the Change filter using CSS button. If all is well, our image should gradually become blurred, as shown in the next image:[image: Creating our base page]

A nice simple demo – nothing too taxing at this stage, given some of the more complex topics we've covered in this book till now!
Tip
A tip – if you find that the filter doesn't display in some versions of Firefox, then check the layout.css.filters.enabled property in about:config. It is not enabled by default in version 34 or earlier; this changed from version 35:
[image: Creating our base page]

The key to this demo is of course the use of the .addClass() method handler. We're simply applying a new, preset class to the image, when clicking the button. The beauty here though is that we have access to a number of quick and easy filters that can be used, and which can reduce (or even eliminate) the use of PhotoShop or GIMP. To see how really easy it is to swap over, let's make that change now, and switch to using the brightness filter.

Changing the brightness level

This next demo is a quick and easy change to the cssfilters.css file we've just been working on. Following is a screenshot of what we will produce:
[image: Changing the brightness level]
Make sure you have this file available before continuing with the steps listed next:
	In cssfilters.css, look for and amend the .change-filter rule as shown:.change-filter { filter: brightness(170%); -webkit-filter: brightness(170%); }

	Click on Change filter using CSS now. If all is well, we should find that the image has become brighter.

Again – nothing taxing here; hopefully this is a good point for a breather, after some of what we've covered in this book! There are a good handful of CSS3 filters we can use; space constraints means we can't cover them all here, but we can at least look at one more filter. The other filters available for use are outlined immediately following this next exercise.

Adding a sepia filter to our image

As before, we need to revert back to changing cssfilters.css, so make sure you have this ready for use. Let's take a look at what we need to do:
	Revert back to cssfilters.css, then alter this line as shown:.change-filter { filter: sepia(100%); -webkit-filter: sepia(100%); }

	Click on Change filter using CSS now. If all is well, we should find that the image now has a sepia filter applied, as shown in this screenshot:[image: Adding a sepia filter to our image]

This is what I love about using CSS3 filters – despite what some purists may say, it is not always necessary to revert back to using a graphics package; a simple change of a value in CSS is all that is required.
We could manually change that value if needed, but we now have the flexibility to programmatically change it too, with little impact on performance. This last point is important – as we will see later in this chapter. Creating complex filters to manipulate images using jQuery is a resource hungry process, so it's not one to be done too frequently.

Exploring other filters

Before we move on and take a look at a different way of manipulating images, the following table gives you a flavor of the different filters available; all of them can be set using jQuery as outlined in our previous exercises:
	
Name of filter

	
Example of how to use it

	

contrast()

	

.change-filter { filter: contrast(170%); -webkit-filter: contrast(170%); }

	

hue-rotate()

	

.change-filter { filter: hue-rotate(50deg); -webkit-filter: hue-rotate(50deg); }

	

grayscale()

	

.change-filter { filter: grayscale(100%); -webkit-filter: grayscale(100%); }

	

invert()

	

.change-filter { filter: invert(100%); -webkit-filter: invert(100%); }

	

Saturate()

	

.change-filter { filter: saturate(50%); -webkit-filter: saturate(50%);}

To see examples of these in action, it is worth taking a look online – there are plenty of examples available. As a starting point, have a look at the article by Johnny Simpson at http://www.inserthtml.com/2012/06/css-filters/; although it is a couple of years old, and some of the settings have been tweaked since then, it still gives a useful flavor of what is possible with CSS3 filters.
Let's change track for a moment – while we can use simple CSS3 filters to manipulate aspects such as contrast and brightness, we can use an alternative method: background blending.

Using the $.proxy function

Up until now, we've covered how making use of event bubbling can help us reduce the need for lots of event handlers; provided we manage the bubbling carefully, then delegation can prove a very useful tool in developing with jQuery.
The flipside of this is that in some instances we may need to give jQuery a helping hand; when it doesn't propagate sufficiently high enough up the chain! At first this may not make sense, so let me explain what I mean.
Let's, for argument sake, imagine we have an event handler that has been created as an object, and that we want to call it when clicking on a link:
var evntHandlers = {
 myName : 'Homer Simpson',

 clickHandler : function(){
 console.log('Hello, ' + this.myName);
 }
};

$("a").on('click',evntHandlers.clickHandler);

If we ran this in a browser, what would you expect to see in the console log area?
Tip
To find out, try extracting the proxy-before.html file from the code download that accompanies this book. Make sure you have a DOM inspector installed!

If you were expecting to see Hello, Homer Simpson, then I will have to disappoint you; the answer won't be what you expect, but instead will be Hello, undefined, as shown in the following image:
[image: Using the $.proxy function]
Okay, so what gives?
The reason for this is that the context being used is within the clickHandler event, and not the evntHandler object; we don't have a myName property within the clickHandler event.
Thankfully, there is a simple fix for this. We can use $.proxy to force a change of context, as shown next:
var evntHandlers = {
 myName : 'Homer Simpson',
 clickHandler : function(){
 console.log('Hello, ' + this.myName);
 }
};

$("a").on('click',$.proxy(evntHandlers.clickHandler,evntHandlers));

To see this in action, extract the proxy-before.html and proxy-after.html files from the code download that accompanies this book. If you run them in a browser, you will see the same results as shown in the following screenshot:
[image: Using the $.proxy function]
This is a simple change to make, but it opens up a wide variety of possibilities. It is a shorthand method of setting the context for a closure. We could of course use the plain JavaScript .bind() methods. Instead, using $.proxy ensures that the function passed in is actually a function, and that a unique ID is passed to that function. If we add namespaces to our events, we can be sure that we unbind the correct event. The $.proxy function is seen as a single function within jQuery, even if it is used to bind different events. Using a namespace rather than a specific proxied function will avoid unbinding the wrong handler in our code.
Note
If you would like to learn more about using $.proxy, then it is worth reading the documentation on the main jQuery site, which is available at http://api.jquery.com/jquery.proxy/.

To give us a real flavor of what is possible, consider this for a moment: how many times have you ended up with functions nested three to four levels deep? Consider the following code:
MyClass = function () {
 this.setupEvents = function () {
 $('a').click(function (event) {
 console.log($(event.target));
 });
 }
}

Rather than working with the above mentioned code, we can refactor it to increase readability, by using $.proxy, as shown next:
MyClass = function () {
 this.setupEvents = function () {
 $('a').click($.proxy(this, 'clickFunction'));
 }

 this.clickFunction = function (event) {
 console.log($(event.target));
 }
}

I think you will agree that this is much easier to read, right?
Okay – let's move on. I'm sure we are all familiar with creating event handlers in jQuery. However, chances are that you're working with standard event handlers. These will work perfectly well, but we're still limited in what we can do.
Well, let's change that. Using jQuery, we can create custom events that break the otherwise familiar mould of what we know is possible, and will allow us to create all kinds of event handlers. Let's take a look at how we can do this in action.

Summary

Delving into new APIs is always fun. Even though they can be simplistic in nature (check out the Vibration API, for example), they can prove to be a really useful addition to anyone's toolbox. We've explored two in detail in this chapter. Let's take a moment to recap what we've covered.
We kicked off with an introduction to the Page Visibility API. We looked at browser support for the API, before implementing a basic example. We moved onto how to detect and provide fallback support, and then looked at some practical examples.
Next came a look at the requestAnimationFrame API, where we learnt about some of the similarities to the Page Visibility API. We explored the basics of how it worked, before looking at some practical uses and how to add support to jQuery itself. We then rounded up the chapter with a look at two examples; one based around converting to using the API, whilst the other had it built in from the ground up.
Moving on, in the next chapter we'll explore another key element of websites, namely images. We're going to explore how you can manipulate images using jQuery to produce some really interesting effects.

Supporting the API

Unlike other APIs, support for this library is very good within all major browsers. As with many APIs, Page Visibility went through the usual process of requiring vendor prefixes, before reaching Recommendation stage at the end of October 2013. At present, none of the recent browsers (post IE8) require vendor prefixes in order to operate.
A typical code extract that uses the Page Visibility API looks like the following code snippet, when using plain JavaScript:
var hidden, state, visibilityChange;
if (typeof document.hidden !== "undefined") {
 hidden = "hidden",
 visibilityChange = "visibilitychange",
 state = "visibilityState";
}

We'll be looking at using jQuery later on this chapter.
It's trivial to implement it in code, so there is no excuse not to. To prove this, let's take a look at a demo in action.

Packaging and deploying your app

Okay, so we have a working application that is ready for packaging and deployment; how do we turn it into something that we can make available for download?
Packaging a Node-WebKit application is surprisingly easy. There are a couple of caveats, but in the main the process centers around dropping all the Node-WebKit distributable files into a folder along with our content and shipping it as a renamed zipped file.
There are several different ways to package our files, depending on the platform being used. Let's take a look at a couple of options using the Windows platform, beginning with a manual compilation.
Note
For those of you who work on Apple Macs or Linux, details on how to package apps are available at https://github.com/rogerwang/node-webkit/wiki/How-to-package-and-distribute-your-apps.

Creating packages manually

Assuming that we're ready to deploy our application, these are the basic steps to follow when creating packages manually—for this example, we'll use the files created earlier, in the Building our simple application section:
	Create a new blank ZIP file and add the package.json, ffmpegsumo.dll, icudtl.dat, libEGL.dll, libGLESv2.dll, and nw.pak files—these are needed to host the site within the cut-down version of Chromium and Node.
	Add the css, img, and js folders along with index.html to the ZIP file.
	Rename ZIP to the .nw file and then run nw.exe—this will use the package.json file to determine what should be run.

Note
Note that Node-WebKit packages do not protect, obfuscate, digitally sign, or make the package secure; this means that making your package open source is a much better option, if only to avoid any problems with licensing!

Automating the process

Hang on, creating a package is a manual process that gets tedious after a while if we're adding a lot of changes, right?
Absolutely, the smart way forward is to automate the process; we can then combine it with a Grunt package, such as grunt-contrib-watch (from https://github.com/gruntjs/grunt-contrib-watch), to take care of building our packages as soon as any change is made. There are several ways to automate it—my personal favorite is to use grunt-node-webkit-builder, from https://github.com/mllrsohn/grunt-node-webkit-builder.
Note
The node-webkit-builder plugin was created by the same developers as the ones behind grunt-node-webkit-builder; the only difference is that the latter has additional support for use with Grunt. If you want to switch to using Grunt, you can install a supplementary package, grunt-node-webkit-builder-for-nw-updater, which is available at https://www.npmjs.com/package/grunt-node-webkit-builder-for-nw-updater.

Let's take a look at the plugin in action—the exercise assumes that you have NodeJS already installed, before continuing with the demo:
	In a new file within the project folder, add the following code and save it as gruntfile.js:module.exports = function(grunt) {

 grunt.initConfig({
 nodewebkit: {
 options: {
 platforms: ['win'],
 buildDir: './builds',
 winIco: './img/filesize.ico'
 },
 src: ['./css/*.css', './img/*.*', './js/*.js', '*.html', '*.php', '*.json', '*.ico']
 }
 })

 grunt.loadNpmTasks('grunt-node-webkit-builder');
 grunt.registerTask('default', ['nodewebkit']);
};

	Next up, we need to install grunt-node-webkit-builder; therefore, go ahead and fire up an instance of the NodeJS command prompt and then navigate to the project folder, which we used earlier in the Building our simple application section.
	Enter this command, then press Enter, and wait for it to complete:
Npm install grunt-node-webkit-builder --save-dev

	In the package.json file, you will see that the following lines have been added, as indicated: "icon": "img/filesize.png"
 },
 "devDependencies": {
 "grunt": "~0.4.5",
 "grunt-node-webkit-builder": "~1.0.2"
 }
}

Tip
If you need to see what the package.json will look like, then head over to https://github.com/3dd13/sample-nw. There is a sample file at https://github.com/3dd13/sample-nw/blob/master/package.json, which shows the contents of the code we've just entered into our own version of the file.

	At this stage, we're now ready to build our package. At the prompt, type grunt and then wait for it to complete; you should see it build the package, as shown in the following screenshot:[image: Automating the process]

	If you revert to the folder where our files are stored, you should now see that a builds folder has appeared; navigating through it will show you something similar to this screenshot, where you have the contents of the win64 build folder displayed:[image: Automating the process]
At this stage, we can double-click on the FileSizeView.exe application to launch the program. This will display our application in all its glory, ready for use. Perfect! We can deploy the files now, right?

Deploying your application

Mmm…hold your horses; as you should know by now, we can always do better!
Absolutely; in this instance, better comes in the form of creating a setup installer so that we only need to distribute a single file. This is much easier to work with! It has the added bonus of compressing the files further; in our example, by using the open source Inno Setup package, the results drop from approximately 80 MB to around 30 MB. Let's take a look at what's required to produce a setup file for the Windows platform:
	We first need to download and install Inno Setup. Head over to http://www.jrsoftware.org/isinfo.php and then click on Download Inno Setup; the setup.exe file can be downloaded from the table about halfway down the page.
	Double-click on the setup.exe file and run through the process, accepting all the defaults.
	In our project folder, we need to create a new folder called setup. This will store the source scripts for Inno Setup and the final builds.
	From the code download, go ahead and extract filesizeview-1.0.iss and store it within the setup folder.
	Double-click on the file to launch it and then click on the highlighted icon, shown in the following screenshot, to compile the build file:[image: Deploying your application]

	When completed, Inno Setup will automatically start the newly created installer, as shown here:[image: Deploying your application]

We can now follow through the installation process to completion, before using the application in anger. Inno Setup has also taken care of the uninstallation process, by including a unins000.exe file that we can use if we need to remove the application from our system.
For those of you using Mac, there will be similar packages available. Try the instructions listed at http://www.codepool.biz/tech-frontier/mac/make-pkg-installer-on-mac-os-x.html as a starting point. You can also try using Inno Setup on Linux, using Wine—the instructions are listed at http://derekstavis.github.io/posts/creating-a-installer-using-inno-setup-on-linux-and-mac-os-x/, although they are not for beginners!

Extending our plugin

A common problem when using plugins is finding one that meets our requirements completely; the likelihood of that happening is probably less than winning the lottery!
To get around this, we can always extend our plugin, to incorporate extra functionality without affecting existing methods. The benefit of doing this means that we can either override existing methods, or merge in additional functionality that helps mold the plugin towards being a closer fit for our requirements. To see how this would work in action, we're going to add a method and extra variable to our existing plugin. There are lots of ways to achieve this, but the method I've used works well too. Let's go through the following steps:
	We'll start by editing a copy of tooltipv2.js. Immediately below the #getValue click handler, go ahead and add the following code: (function($) {
 var extensionMethods = {
 fadeInValue: 600,
 showDebug: function(event) {
 console.log("This is a test");
 }
 }
 $.extend($.fn.quicktip, extensionMethods);
 })(jQuery);

	Save the file. If we preview tooltipsv2.html in a browser, then dig into the rendered code via a DOM Inspector, we should see something akin to the following screenshot:[image: Extending our plugin]

In this instance, we've added a method that doesn't really perform much; the key here is not so much what it does, but how we add it in. Here, we've made it available as an additional method to the existing object. Add the following to the foot of tooltipsv2.js:
 $('#img-list li a.tooltips').on("mouseover", function() {
 $('#img-list li a.tooltips').quicktip.showDebug();
 })

If we now refresh our browser session, we can see it in action within the Console area of our browser, as can be seen in the next screenshot:
[image: Extending our plugin]
There is a lot more that we can do and it's worth spending time researching online. The key to extending is to make sure you understand the differences between $.fn.extend and $.extend. They might look identical, but trust me – they act differently!

Introducing design patterns

If you've spent any time developing code in jQuery, then it is very likely that you've created one or more plugins; these can technically range from just a handful of lines to something more substantial.
Over time, there is a risk that amending code in plugins can lead to content becoming unwieldy and difficult to debug. One way of dealing with this is to use design patterns. We covered this back in Chapter 3, Organizing Your Code. Many of the same principles can equally apply to plugins, although the patterns themselves will of course be different. Let's consider a few examples.
The most basic pattern is A Lightweight Start, which will suit those who have developed plugins before, but are new to the concept of following a specific pattern. This particular pattern is based around common best practices, such as using a semicolon before invoking the function; it will pass in standard arguments such as window, document, and undefined. It contains a basic default object which we can extend, and adds a wrapper around the constructor to prevent issues with multiple installations.
At the opposite end, we can always try working with the Complete Widget Factory. Although it is used as the basis for jQuery UI, it can also be used to create standard jQuery plugins. This pattern is perfect for creating complex, state-based plugins. It contains comments for all the methods used, to help ensure that logic fits into your plugin.
We've also covered the concept of namespacing, or adding a specific name to avoid collisions with other objects or variables within the global namespace. Although we might use namespacing within our code, we can equally apply it to plugins too. The great thing about this particular pattern is how we can check for its existing instances; if the name doesn't exist then we are free to add it, otherwise we can extend an existing plugin with the same namespace.
These are three of the plugin patterns that are available for use; a question I am sure will arise, though, is which one to use? As with many things, there is no right or wrong answer; it will depend on circumstances.
Note
A list of the most common plugin design patterns is available at https://github.com/jquery-boilerplate/jquery-patterns.

Creating or using patterns

If you're new to using plugin design patterns, then A Lightweight Start is the best place to begin. There are three key aspects to using any plugin pattern, or designing your own:
	Architecture: This defines the rules of how your components should interact.
	Maintainability: Any written code should be easily extendable and improvable. It should not be locked down from the start.
	Reusability: How often can you reuse your existing code? The more it can be reused, the more time it will save, and it will also be easier to maintain.

The important thing about using patterns is that there isn't a single right answer. It all boils down to which pattern most closely fits your needs. The best way to gauge which pattern fits best is to try them. Over time, experience will give you a clear indication as to which pattern works best for a given scenario.
Tip
For a good discussion on the pros and cons of using a particular plugin pattern, head over to the article by Smashing Magazine at http://www.smashingmagazine.com/2011/10/11/essential-jquery-plugin-patterns/. It may be a few years old, but many of the points still hold value.

Anyway, let's get back to the present! There is no time better than now to start gaining experience, so let's take a look at the jQuery Lightweight Boilerplate pattern. This implements the Singleton/Module design pattern. It helps developers to write encapsulate code that can be kept away from polluting the global namespace.
Over the next few pages, we'll be developing a tooltip plugin. We'll start with a typical build that doesn't use any pattern, before modifying it to use the Lightweight Boilerplate style. We'll then delve into a few tips and tricks that will help us consider the bigger picture, and hopefully make us better developers.

Using other sources to install jQuery

Right. Okay, let's move on and develop some code! "What's next?" I hear you ask.
Aha! If you thought downloading and installing jQuery from the main site was the only way to do this, then you are wrong! After all, this book is about mastering jQuery, so you didn't think I will only talk about something that I am sure you are already familiar with, right?
Yes, there are more options available to us to install jQuery than simply using the CDN or main download page. Let's begin by taking a look at using Node.
Note
Each demo is based on Windows, as this is the author's preferred platform; alternatives are given, where possible, for other platforms.

Using NodeJS to install jQuery

So far, we've seen how to download and reference jQuery, which is to use the download from the main jQuery site or via a CDN. The downside of this method is the manual work required to keep our versions of jQuery up to date! Instead, we can use a package manager to help manage our assets. Node.js is one such system. Let's take a look at the steps that need to be performed in order to get jQuery installed:
	We first need to install Node.js—head over to http://www.nodejs.org in order to download the package for your chosen platform; accept all the defaults when working through the wizard (for Mac and PC).
	Next, fire up a Node command prompt and then change to your project folder.
	In the prompt, enter this command:
npm install jquery

	Node will fetch and install jQuery—it displays a confirmation message when the installation is complete:[image: Using NodeJS to install jQuery]

	You can then reference jQuery by using this link:<name of drive>:\website\node_modules\jquery\dist\jquery.min.js.

Node is now installed and ready for use—although we've installed it in a folder locally, in reality, we will most likely install it within a subfolder of our local web server. For example, if we're running WampServer, we can install it, then copy it into the /wamp/www/js folder, and reference it using http://localhost/js/jquery.min.js.
Note
If you want to take a look at the source of the jQuery Node Package Manager (NPM) package, then check out https://www.npmjs.org/package/jquery.

Using Node to install jQuery makes our work simpler, but at a cost. Node.js (and its package manager, NPM) is primarily aimed at installing and managing JavaScript components and expects packages to follow the CommonJS standard. The downside of this is that there is no scope to manage any of the other assets that are often used within websites, such as fonts, images, CSS files, or even HTML pages.
"Why will this be an issue?," I hear you ask. Simple, why make life hard for ourselves when we can manage all of these assets automatically and still use Node?

Installing jQuery using Bower

A relatively new addition to the library is the support for installation using Bower—based on Node, it's a package manager that takes care of the fetching and installing of packages from over the Internet. It is designed to be far more flexible about managing the handling of multiple types of assets (such as images, fonts, and CSS files) and does not interfere with how these components are used within a page (unlike Node).
For the purpose of this demo, I will assume that you have already installed it from the previous section; if not, you will need to revisit it before continuing with the following steps:
	Bring up the Node command prompt, change to the drive where you want to install jQuery, and enter this command:
bower install jquery

This will download and install the script, displaying the confirmation of the version installed when it has completed, as shown in the following screenshot:
[image: Installing jQuery using Bower]
The library is installed in the bower_components folder on your PC. It will look similar to this example, where I've navigated to the jquery subfolder underneath:
[image: Installing jQuery using Bower]
By default, Bower will install jQuery in its bower_components folder. Within bower_components/jquery/dist/, we will find an uncompressed version, compressed release, and source map file. We can then reference jQuery in our script using this line:
<script src="/bower_components/jquery/jquery.js"></script>

We can take this further though. If we don't want to install the extra files that come with a Bower installation by default, we can simply enter this in a command prompt instead to just install the minified version 2.1 of jQuery:
bower install http://code.jquery.com/jquery-2.1.0.min.js

Now, we can be really clever at this point; as Bower uses Node's JSON files to control what should be installed, we can use this to be really selective and set Bower to install additional components at the same time. Let's take a look and see how this will work—in the following example, we'll use Bower to install jQuery 2.1 and 1.10 (the latter to provide support for IE6-8):
	In the Node command prompt, enter the following command:
bower init

This will prompt you for answers to a series of questions, at which point you can either fill out information or press Enter to accept the defaults.

	Look in the project folder; you should find a bower.json file within. Open it in your favorite text editor and then alter the code as shown here:{
 "ignore": ["**/.*", "node_modules", "bower_components", "test", "tests"] ,
 "dependencies": {
 "jquery-legacy": "jquery#1.11.1",
 "jquery-modern": "jquery#2.10"
 }
}

At this point, you have a bower.json file that is ready for use. Bower is built on top of Git, so in order to install jQuery using your file, you will normally need to publish it to the Bower repository.
Instead, you can install an additional Bower package, which will allow you to install your custom package without the need to publish it to the Bower repository:
	In the Node command prompt window, enter the following at the prompt:
npm install -g bower-installer

	When the installation is complete, change to your project folder and then enter this command line:
bower-installer

	The bower-installer command will now download and install both the versions of jQuery, as shown here:[image: Installing jQuery using Bower]

At this stage, you now have jQuery installed using Bower. You're free to upgrade or remove jQuery using the normal Bower process at some point in the future.
Note
If you want to learn more about how to use Bower, there are plenty of references online; https://www.openshift.com/blogs/day-1-bower-manage-your-client-side-dependencies is a good example of a tutorial that will help you get accustomed to using Bower. In addition, there is a useful article that discusses both Bower and Node, available at http://tech.pro/tutorial/1190/package-managers-an-introductory-guide-for-the-uninitiated-front-end-developer.

Bower isn't the only way to install jQuery though—while we can use it to install multiple versions of jQuery, for example, we're still limited to installing the entire jQuery library.
We can improve on this by referencing only the elements we need within the library. Thanks to some extensive work undertaken by the jQuery Core team, we can use the Asynchronous Module Definition (AMD) approach to reference only those modules that are needed within our website or online application.

Using the AMD approach to load jQuery

In most instances, when using jQuery, developers are likely to simply include a reference to the main library in their code. There is nothing wrong with it per se, but it loads a lot of extra code that is surplus to our requirements.
A more efficient method, although one that takes a little effort in getting used to, is to use the AMD approach. In a nutshell, the jQuery team has made the library more modular; this allows you to use a loader such as require.js to load individual modules when needed.
It's not suitable for every approach, particularly if you are a heavy user of different parts of the library. However, for those instances where you only need a limited number of modules, then this is a perfect route to take. Let's work through a simple example to see what it looks like in practice.
Note
Before we start, we need one additional item—the code uses the Fira Sans regular custom font, which is available from Font Squirrel at http://www.fontsquirrel.com/fonts/fira-sans.

Let's make a start using the following steps:
	The Fira Sans font doesn't come with a web format by default, so we need to convert the font to use the web font format. Go ahead and upload the FiraSans-Regular.otf file to Font Squirrel's web font generator at http://www.fontsquirrel.com/tools/webfont-generator. When prompted, save the converted file to your project folder in a subfolder called fonts.
	We need to install jQuery and RequireJS into our project folder, so fire up a Node.js command prompt and change to the project folder.
	Next, enter these commands one by one, pressing Enter after each:
bower install jquery
bower install requirejs

	We need to extract a copy of the amd.html and amd.css files from the code download link that accompanies this book—it contains some simple markup along with a link to require.js; the amd.css file contains some basic styling that we will use in our demo.
	We now need to add in this code block, immediately below the link for require.js—this handles the calls to jQuery and RequireJS, where we're calling in both jQuery and Sizzle, the selector engine for jQuery: <script>
 require.config({
 paths: {
 "jquery": "bower_components/jquery/src",
 "sizzle": "bower_components/jquery/src/sizzle/dist/sizzle"
 }
 });
 require(["js/app"]);
 </script>

	Now that jQuery has been defined, we need to call in the relevant modules. In a new file, go ahead and add the following code, saving it as app.js in a subfolder marked js within our project folder:define(["jquery/core/init", "jquery/attributes/classes"], function($) {
 $("div").addClass("decoration");
});

Note
We used app.js as the filename to tie in with the require(["js/app"]); reference in the code.

	If all went well, when previewing the results of our work in a browser, we'll see this message:[image: Using the AMD approach to load jQuery]

Although we've only worked with a simple example here, it's enough to demonstrate how easy it is to only call those modules we need to use in our code rather than call the entire jQuery library. True, we still have to provide a link to the library, but this is only to tell our code where to find it; our module code weighs in at 29 KB (10 KB when gzipped), against 242 KB for the uncompressed version of the full library!
Note
There is a completed version of our code available in the code download link that accompanies this book—look for and run the amd-finished.html file to view the results.

Now, there may be instances where simply referencing modules using this method isn't the right approach; this may apply if you need to reference lots of different modules regularly.
A better alternative is to build a custom version of the jQuery library that only contains the modules that we need to use and the rest are removed during build. It's a little more involved but worth the effort—let's take a look at what is involved in the process.

What you need for this book

All you need to work through most of the examples in this book is a simple text or code editor, a copy of the jQuery library, Internet access, and a browser. I recommend that you install Sublime Text—either version 2 or 3; it works well with Node and Grunt, which we will use at various stages throughout the book.
Some of the examples make use of additional software, such as Node or Grunt—details are included within the appropriate chapter along with links to download the application from its source.

Detailing AJAX best practices

Throughout this chapter, we've revisited the basics, and explored some of the techniques we can use to take our knowledge of AJAX to the next level – the key being that it is not necessarily just about coding, but visiting some of those tips and tricks that help make us a more rounded developer.
In Working with Deferreds and Promises section, we explored the basics of using jQuery's Deferreds and Promises, and how the change in architecture when using them can lead to significant improvements in performance. Before we round up this chapter, there are some additional best practices that we should follow wherever possible. Following list explains them:
	There is no need to call .getJson() or .get() directly. These are called when using the $.ajax() object by default.
	Don't mix protocols when calling requests. The preference is to use schemaless requests where possible.
	If you are just making GET requests, try to avoid putting request parameters in the URL – instead send them using the data object setting, thus:// Less readable
$.ajax({
 url: "something.php?param1=test1¶m2=test2",

});

// More readable
$.ajax({
 url: "something.php",
 data: { param1: test1, param2: test2 }
});

	Try to specify the dataType setting so it's easier to know what kind of data you are working with. For an example, please refer to the Creating a simple example using AJAX, from earlier section in the chapter.
	Use delegated event handlers for attaching events to content loaded using AJAX. Delegated events can process events from descendant elements that are added to the document at a later time:$("#parent-container").on("click", "a", delegatedClickHandler);

Tip
To learn more, please refer to http://api.jquery.com/on/#direct-and-delegated-events.

Introducing easing functions

When animating any object or element on a page, we can simply slide it up or down or move it from one place to another on the page. These are perfectly valid effects, but they lack the realism you might get when opening a drawer, for example.
Animations don't always move at a constant speed; instead, we might get a little bounce back if we were bouncing a ball or a slow down when opening a chest of drawers. To achieve this effect, we need to use easing functions, which control the rate of change. There are plenty of examples available on the Internet—a great place to start is http://www.easings.net—or perhaps we can watch the effects on sites such as http://matthewlein.com/ceaser/. Over the next few pages, we're going to explore these in more detail and look at tips and tricks that we can use to push our animation skills to a new level.

Summary

We've covered a lot of content in the last few pages, some of which may make your head spin, so let's take a breather and consider what we have learned.
We kicked off with an introduction to the patching of libraries, such as jQuery, and the term duck punching (or monkey patching). We looked at how we can replace or modify the existing behavior of jQuery by using this method, before moving on to create a basic monkey patch and working through its application to code.
Next up came a look at some of the benefits we can gain by using monkey patches; we spoke about the risk involved and some pitfalls that we need to consider when creating and applying patches.
We then switched to working through a number of demos that explored some of the ways in which we can alter code temporarily, before finishing with a look at how we can get our patches out into use for production.
Developing any form of patch or plugin requires well-maintained code if were to be successful. In the next chapter, we'll see how we can improve our skills in this area, with a look at using design patterns to better organize our code.

Creating and managing the effect queue

Queues, queues – who likes queuing, I wonder?
Although not all of us like to queue for things, such as for getting lunch or visiting a bank, queuing is critical to the success of running animations. It matters not one jot if we're using .slideUp(), .animate() or even .hide() – if we chain too many animations, we will hit a point where animations won't run.
To release the animation, we need to explicitly call .dequeue(), as the methods come in pairs. Consider the following example for a moment, taken from http://cdmckay.org/blog/2010/06/22/how-to-use-custom-jquery-animation-queues/:
Imagine you're making a game and you want to have an object start at top:100px, then float upwards for 2000 milliseconds. Furthermore, you would like the said object to stay completely opaque for 1000 milliseconds before slowly becoming completely transparent over the remaining 1000 milliseconds:
	
Time (in ms)

	
Top

	
Opacity

	
0

	
100px

	
1.0

	
500

	
90px

	
1.0

	
1000

	
80px

	
1.0

	
1500

	
70px

	
0.5

	
2000

	
60px

	
0.0

At first glance, it appears that the animate command could take care of this, as can be seen in the following code:
$("#object").animate({opacity: 0, top: "-=40"}, {duration: 2000});

Unfortunately, this code will fade the object out over 2000 ms, instead of waiting 1000 ms then fading out over the remaining 1000 ms. Delay can't help either, because it would delay the upward floating as well. At this point, we can either fiddle with timeouts or, you guessed it, use queues.
With this in mind, following is what the code would look like, altered to use .queue() and .dequeue():
$("#object")
 .delay(1000, "fader")
 .queue("fader", function(next) {
 $(this).animate({opacity: 0},
 {duration: 1000, queue: false});
 next();
 })
 .dequeue("fader")
 .animate({top: "-=40"}, {duration: 2000})

In this example, we have two queues: the fx queue and the fader queue. First off, we setup the fader queue. Since we want to wait 1000 ms before fading, we use the delay command with 1000 ms.
Next, we queue up an animation that fades the object out over 1000 ms. Pay close attention to the queue: false option we set in the animate command. This is to ensure the animation doesn't use the default fx queue. Finally, we unleash the queue using dequeue and immediately follow it with a regular fx, using the animate call to move the top of the object up 40 pixels.
We could even turn the use of .queue() and .dequeue() into a plugin. Given that both need to be used, it would make sense to turn it into something that is easier to read in code. Consider the next example:
$.fn.pause = function(delay) {
 return this.queue(function() {
 var elem = this;
 setTimeout(function() {
 return $(elem).dequeue();
 }, delay);
 });
};
$(".box").animate({height: 20}, "slow").pause(1000).slideUp();

In the previous example, we first animate the change in height to .box before pausing and then sliding up the .box element.
The key point to note is that queue() and dequeue() are based around the fx object in jQuery. As this is already set by default, there is no need to specify it within our plugin.
Tip
If you're unsure about the uses of queue() and dequeue(), then it's worth taking a look at http://learn.jquery.com/effects/uses-of-queue-and-dequeue/, which outlines some useful case examples.

Using .queue() and its counterpart .dequeue() provides a graceful means of controlling animations. Its use is arguably more suited to multiple, complex animations, particularly where animation timelines need to be implemented. If we're only using a small number of simple animations though, then the weight of an extra plugin may not be necessary. Instead, we can simply add .stop() to provide a similar effect. Refer to the following:
$(selector).stop(true,true).animate({...}, function(){...});

It may not be quite as graceful, but using .stop() does improve the look of your animations!

Considering the benefits of monkey patching

Okay, so we've seen what a typical patch will look like; the question, though, is, why would we want to patch the core library functionality using this method?
This is a very good question—it's a method that has its risks (as we will see later in this chapter, in the Considering the pitfalls of monkey patching section). The key to using this method is to take a considered approach; with this in mind, let's take a moment to consider the benefits of duck punching jQuery:
	We can replace methods, attributes, or functions at runtime, where they lack functionality or contain a bug that needs to be fixed and we can't wait for an official patch
	Duck punching jQuery allows you to modify or extend the existing behavior of jQuery without maintaining a private copy of the source code
	We have the safety net of being able to apply a patch to objects running in memory, instead of the source code; in other words, if it goes completely wrong, we can simply pull the patch from the site and leave the original source code untouched
	Monkey patching is a good way to distribute security or behavioral fixes that live alongside the original source code; if there is any doubt with the resiliency of a patch, we can stress test it before committing it to the source

Enough of the talking, let's get to coding some demos! We're going to work through some example patches that can be equally applied to jQuery, beginning with a look at animation.

Chapter 7. Advanced Event Handling

How many times do you go to a website to perform an action? It might be online banking, or perhaps purchasing something from Amazon; in both cases, the sites will detect the actions taking place, and respond accordingly.
Part of working with jQuery is knowing how and when to respond to different types of events. In most cases, people are likely to use the .on() or .off() event handlers to handle them. While this works perfectly well, it just scratches the surface of what can be done with event handling. In this chapter, we will take a look at some of the tips and tricks we can use to expand our skills when it comes to event handling. We will cover the following topics:
	Delegating events
	Using the $.proxy function
	Creating and decoupling custom event types
	Namespacing events

Intrigued? Let's get on with it then!
Introducing event handling

A question – how often do you go online to perform a task? I'll bet it's a fair few times a week; it could be anything from online banking, to hitting Amazon to get that latest DVD (DVDs – who downloads them, I wonder?)
That aside, we can't escape having to click on a link or a button to advance through a process. In most cases, the code behind the event is likely to be the ubiquitous click handler, or it could even be .change() or .hover(). All are shorthand forms of the .on() (or even .off()) event handlers, and are of course functionality equivalent to something like the following:
$('a').on('click', function(){
 $(this).css('background-color','#f00');
});

This will turn the selected element to a nice shade of red. However, there is more to event handling than simply defining an action on a known element. Over the next few pages, we're going (to quote a nautical term) to push the boat out, and take a look at a few tips and tricks that we can use, to help develop our skills further. We'll begin with a look at event delegation.

Chapter 1. Installing jQuery

Local or CDN, I wonder…? Which version…? Do I support old IE…?
Installing jQuery is a thankless task that has to be done countless times by any developer—it is easy to imagine that person asking some of the questions that start this chapter. It is easy to imagine why most people go with the option of using a Content Delivery Network (CDN) link, but there is more to installing jQuery than taking the easy route!
There are more options available, where we can be really specific about what we need to use—throughout this chapter, we will examine some of the options available to help develop your skills even further. We'll cover a number of topics, which include:
	Downloading and installing jQuery
	Customizing jQuery downloads
	Building from Git
	Using other sources to install jQuery
	Adding source map support
	Working with Modernizr as a fallback

Intrigued? Let's get started.
Downloading and installing jQuery

As with all projects that require the use of jQuery, we must start somewhere—no doubt you've downloaded and installed jQuery a thousand times; let's just quickly recap to bring ourselves up to speed.
If we browse to http://www.jquery.com/download, we can download jQuery using one of the two methods: downloading the compressed production version or the uncompressed development version. If we don't need to support old IE (IE6, 7, and 8), then we can choose the 2.x branch. If, however, you still have some diehards who can't (or don't want to) upgrade, then the 1.x branch must be used instead.
To include jQuery, we just need to add this link to our page:
<script src="http://code.jquery.com/jquery-X.X.X.js"></script>

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account from http://www.packtpub.com. If you purchase this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Here, X.X.X marks the version number of jQuery or the Migrate plugin that is being used in the page.
Conventional wisdom states that the jQuery plugin (and this includes the Migrate plugin too) should be added to the <head> tag, although there are valid arguments to add it as the last statement before the closing <body> tag; placing it here may help speed up loading times to your site.
This argument is not set in stone; there may be instances where placing it in the <head> tag is necessary and this choice should be left to the developer's requirements. My personal preference is to place it in the <head> tag as it provides a clean separation of the script (and the CSS) code from the main markup in the body of the page, particularly on lighter sites.
I have even seen some developers argue that there is little perceived difference if jQuery is added at the top, rather than at the bottom; some systems, such as WordPress, include jQuery in the <head> section too, so either will work. The key here though is if you are perceiving slowness, then move your scripts to just before the <body> tag, which is considered a better practice.
Using jQuery in a development capacity

A useful point to note at this stage is that best practice recommends that CDN links should not be used within a development capacity; instead, the uncompressed files should be downloaded and referenced locally. Once the site is complete and is ready to be uploaded, then CDN links can be used.

Adding the jQuery Migrate plugin

If you've used any version of jQuery prior to 1.9, then it is worth adding the jQuery Migrate plugin to your pages. The jQuery Core team made some significant changes to jQuery from this version; the Migrate plugin will temporarily restore the functionality until such time that the old code can be updated or replaced.
The plugin adds three properties and a method to the jQuery object, which we can use to control its behavior:
	
Property or Method

	
Comments

	

jQuery.migrateWarnings

	
This is an array of string warning messages that have been generated by the code on the page, in the order in which they were generated. Messages appear in the array only once even if the condition has occurred multiple times, unless jQuery.migrateReset() is called.

	

jQuery.migrateMute

	
Set this property to true in order to prevent console warnings from being generated in the debugging version. If this property is set, the jQuery.migrateWarnings array is still maintained, which allows programmatic inspection without console output.

	

jQuery.migrateTrace

	
Set this property to false if you want warnings but don't want traces to appear on the console.

	

jQuery.migrateReset()

	
This method clears the jQuery.migrateWarnings array and "forgets" the list of messages that have been seen already.

Adding the plugin is equally simple—all you need to do is add a link similar to this, where X represents the version number of the plugin that is used:
<script src="http://code.jquery.com/jquery-migrate-X.X.X.js"></script>

If you want to learn more about the plugin and obtain the source code, then it is available for download from https://github.com/jquery/jquery-migrate.

Using a CDN

We can equally use a CDN link to provide our jQuery library—the principal link is provided by MaxCDN for the jQuery team, with the current version available at http://code.jquery.com. We can, of course, use CDN links from some alternative sources, if preferred—a reminder of these is as follows:
	Google (https://developers.google.com/speed/libraries/devguide#jquery)
	Microsoft (http://www.asp.net/ajaxlibrary/cdn.ashx#jQuery_Releases_on_the_CDN_0)
	CDNJS (http://cdnjs.com/libraries/jquery/)
	jsDelivr (http://www.jsdelivr.com/#%!jquery)

Don't forget though that if you need, we can always save a copy of the file provided on CDN locally and reference this instead. The jQuery CDN will always have the latest version, although it may take a couple of days for updates to appear via the other links.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Customer Support

Now that you are the proud owner of a Packt book, we have a number of things to help you get the most from your purchase.
Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books – maybe a mistake in the text or the code – we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us to improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "We'll start by extracting the relevant files from the code download for this book; for this demo, we'll need clicktoggle.css, jquery.min.js, and clicktoggle.html."
A block of code is set as follows:
$(this).on("click", function() {
 if (clicked) {
 clicked = false;
 return b.apply(this, arguments);
 }
 clicked = true;
 return a.apply(this, arguments);
 });
});

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
$('#section').hide(2000, 'swing', function() {
 $(this).html("Animation Completed");
});

Any command-line input or output is written as follows:

npm install jquery

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "When we view the page and select the Images tab, after a short delay we should see six new images."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Adding callbacks to our effects

Okay, so we've created our effect, and set it to run. What if we wanted to be alerted when it completes, or even if it fails? Easy! We can provide a callback, as long as we pass a function (with or without parameters). Then we can ask jQuery to perform an action once the effect is completed, as shown in the following example:
 $(document).ready(function() {
 $("#myButton").on("click", function () {
 $('#section').hide(2000, 'swing', function() {
 $(this).html("Animation Completed");
 });
 });
 });

It's a perfectly workable way of being notified, and a breeze to implement. But it's not without its shortcomings. Two of the principal ones are maintaining control over when and how the callback is executed, and only being able to run one callback.
Thankfully, we are not obliged to use standard callbacks, as jQuery's Deferreds comes to the rescue. We touched on using it back in Chapter 5, Integrating AJAX. The beauty about Deferreds and Promises is that they can be applied to any jQuery functionality; events are particularly suited for this purpose. Let's take a look at how we can make use of this functionality, within the context of effects.

Summary

Animating content within projects can be very satisfying if done well; this relies on us not just using the right code but also deciding whether jQuery is the right tool or whether CSS animations will be preferable for our needs. We've covered a lot over the last few pages, so let's take a moment to recap what we learned.
We kicked off with a discussion on the merits of using jQuery or CSS and when it might be preferable to use one instead of the other; we saw some of the benefits of using CSS and that circumstances may dictate the use of jQuery.
We then moved on to take a look at the classic issue that besets jQuery developers at some point in their lives, namely controlling the animation queue; we saw how to implement a quick and dirty fix, with subsequent improvements to reduce or eliminate the issue.
Next up came a discussion on the use of easing functions; we saw how easy it is to not just rely on tried and tested sources such as the jQuery UI but also to develop simple actions that extend core jQuery. We took a look at building our own custom-easing functions followed by converting those that we might see in CSS to jQuery equivalents.
We then rounded out the chapter with a look at some animation examples in the form of animating buttons, implementing an overlay effect with a twist and animating content on a responsive site.
In the next chapter, we're going to take a look at advanced event handling. In most cases, people use .on() or .off(), but as we'll see, this only scratches the surface of what is possible with jQuery.

Delegating events

Someone once said that the art of being a good manager is to know when to delegate. I hope that this wasn't an excuse for them to offload a horrible job to a subordinate, although the cynical might say otherwise!
Leaving aside the risk, delegation follows the same principles in jQuery. If we need to create an application which requires binding some form of event handler to lots of elements of the same type, then we might consider writing event handlers to cover each element.
It'll work to an extent, but is very wasteful of resources. If the list is large, then events will be bound to all of the elements within, which uses more memory than is needed. We can get around this by using event delegation, where we can shift to binding one event handler to a single ancestor element that serves multiple descendants, or enable event handling for newly created elements.
There are a few tricks we can use to help us with better managing of events using delegation. Before we take a look at them, let's quickly recap the basics of how event delegation works.
Revisiting the basics of event delegation

A question – how often have you used .on(), or even .off() when coding event handlers in jQuery? I'll bet the answer is probably countless times. If you've not already used event delegation before, then you're already halfway to using it without realizing it!
Event delegation relies on the use of event propagation, or event bubbling as it is sometimes known. It is the key to understanding how delegation works. Let's work through a quick example.
Imagine we're using the following HTML code as the basis for a list:
<div id="container">
 <ul id="list">
 Item #1
 Item #2
 Item #3
 Item #4

</div>

Nothing outrageous here – it's a simple example. Any time one of our anchor tags is clicked, a click event is fired for that anchor. The event is dispatched in one of the three phases: capturing, target, and bubbling.
It will be captured at the document root, work its way down until it hits its target (The li tag), before bubbling back up to the document root, as shown next:
	document root
	<html>
	<body>
	<div #container>
	<ul #list>
	
	<a>

Yikes! This means that each time we're clicking on a link, we're effectively clicking on the whole document! Not great! It's expensive on resources, and even if we were to add additional list items using code such as this:
$("#list").append("Item #5");

We would find that the aforementioned click handler wouldn't work with these items.
Tip
The bubbling example used here is somewhat simplified, and doesn't show all the various phases. For a useful discussion, head over to the comments posted on Stack Overflow at http://stackoverflow.com/questions/4616694/what-is-event-bubbling-and-capturing.

Reworking our code

Instead of adding a directly bound handler, we can take advantage of event propagation, and rework our handler to listen for descendant anchors, instead of binding to existing anchor tags only. This can be seen in the following code:
$("#list").on("click", "a", function(event) {
 event.preventDefault();
 console.log($(this).text());
});

The only difference in the code is that we've moved the a selector to the second parameter position of the .on() method. This creates a single event handler against #list, with the event bubbling up one level from a to #list. Event delegation removes the need to create multiple event handlers, which is wasteful - the code will work equally well with both existing anchor tags within #list, and with any that are added in the future.
Tip
If you would like to learn more about event delegation, then it is worth viewing the jQuery API documentation, which is at http://learn.jquery.com/events/event-delegation/. The jQuery documentation also has a useful section on using .on() within delegated events at http://api.jquery.com/on/.

Supporting older browsers

A small point – if you need to rework older code, then you may see .bind(), .live(), or .delegate() as event handlers. All were used to delegate events prior to jQuery 1.7, but should now be replaced with .on(). In fact, the first, .bind is a one line function that calls to .on (and its partner, .off()):
[image: Supporting older browsers]
The same applies for .delegate() and its partner event handler, .undelegate():
[image: Supporting older browsers]
It should be noted that .on() mimics the behaviors found when using .bind() or .delegate(). The former is very resource hungry as it attaches to every single element it can match; the latter still has to work out which event handler to invoke. However, the scope of this should be smaller in comparison to using the .bind() method.
Now that we've delved into the inner workings of .on(), let's put it into action, and create a simple demo to remind ourselves of how delegation works within jQuery.

Exploring a simple demonstration

It's time for a little action, so let's start with a quick reminder of how event delegation works, when using jQuery:
	Let's start by extracting the files we need from the code download that accompanies this book. For this demo, we need the simpledelegation.html, simpledelegation.css, and jquery-ui.min.css files.
	Save the CSS files within the css subfolder of our project area. The HTML markup needs to be stored in the root area of the project folder.
	In a new file, add the following code—save the file as simpledelegation.js, and store it in the js subfolder of our project area:$(document).ready(function(event){
 var removeParent = function(event) {
 $('#list').parent('li').remove();
 }

 var removelistItem = function(event) {
 $(event.target).parent().remove();
 }

 $('li.ui-widget-content').children().on("click", removeParent);

 $('ul').on("click", "li", removelistItem);
});

	If all is well, we should see the following list of items, when previewing the results in a browser:[image: Exploring a simple demonstration]

	Try clicking on a number of the links – if you click on any of the remove links, then the list item will be removed; clicking on one of the list items will remove all of the items from the list.

The key to this demo is the following one line:
$('ul').on("click", "li", removelistItem);

Although we have multiple items within the list, we've created one single delegated event handler. It bubbles up to the parent of the item we clicked, then removes it. In this instance, we've separated out the function that is called when the event is triggered; this could easily have been incorporated into the handler.
Now that we've revisited the basics of event delegation, let's take a look at some of the reasons why event delegation can lead to increased performance, when working with a lot of similar elements.

Exploring the implications of using event delegation

The key benefit of implementing delegated events in place of direct equivalents, is reducing memory usage and avoiding memory leaks if multiple event handlers are present in our code. Normally, we would need to implement an event handler for each instance where we need something to happen.
Note
The real impact of using event delegation is around the savings in memory usage, gained from where event handler definitions are stored within the internal data structure.

Instead, reducing the number of event handlers means that we can reduce memory leaks and improve performance (by reducing the amount of code that has to be parsed). As long as we are careful about where we bind the event handler, there is a potential to dramatically reduce the impact on the DOM and the resulting memory usage, particularly in larger applications. The bonus is that if event delegation has been implemented, it will apply equally to existing elements that have been defined, as well as those that have yet to be created. Directly applied event handlers will not work; they can only be applied to elements that already exist prior to the event handler being called in the code.
The ability to handle events that exist, and those that have yet to happen, sounds like a good thing. After all, why repeat ourselves, if one event handler can handle multiple events, right? Absolutely – as long as we manage it carefully! If we trigger an event on a specific element, such as an anchor tag for example, then this will be allowed to handle the event first. The event will bubble up until it reaches document level, or a lower event handler decides to stop event propagation. This last part is key – without control, we could end up with unexpected results, where event handlers have responded, or not fired, contrary to expectations.
Tip
To see a detailed explanation of what can happen, take a look at http://css-tricks.com/capturing-all-events/. It contains links to examples on CodePen that illustrate this issue very well.

To help reduce the impact of event bubbling causing event handlers to fire out of turn, we use methods such as event.stopPropagation(). This is not the only trick we can use, so let's take a moment to explore some of the options available when using event delegation.

Controlling delegation

Taking advantage of event bubbling increases the scope for reducing the number of event handlers we need to implement within our code; the downside is the instances of unexpected behavior, where event handlers may not be triggered at the desired points.
To control which elements might trigger a delegated event handler, we can use one of the following two tricks: event.stopPropagation(), or trapping the event target and determining if it matches a given set of conditions (such as a specific class or data- name).
Let's take a look at this second option first – an example block of code might look like the following:
$("ul.my-list").click(function(event) {
 if ($(event.target).hasClass("my-item")) {
 handleListItemAction(event.target);
 }
else if ($(event.target).hasClass("my-button")) {
 handleButtonClickedAction(evt.target);
 }
});

That's one clumsy way of doing things! Instead, we can simply instigate a check on the class name, using a variation of the delegated event handler, as shown next:
$("ul.my-list").on("click",".my-item", function(evt) {
 //do stuff
});

This is a really simple trick we can use – it's so simple, it probably doesn't count as a trick, as such! To see how easy it is to make the change, let's run through a quick demo now:
	From the code download, we need to extract the propagation-css.html and propagation.html files. These contain some simple markup and styles for our basic list. Save the CSS file in the css subfolder of our project area, and the HTML markup at the root of the same area.
	Next, we need to create the event handler that will fire when the conditions match. Go ahead and add the following to a new file, saving it as propagation-css.js in the js subfolder of our project area: $(document).ready(function() {
 $('#list').on('click', '.yes', function eventHandler(e) {
 console.log(e.target);
 });
 });

At this point, if we preview the results in a browser, we will have a simple list, where list items darken if we hover over a specific item. Nothing particularly special about this – it's just borrowing some styling from jQuery UI.
However, if we fire up a DOM inspector, such as Firebug, and then hover over each item, we can see console output is added each time we hover over an item with a class of .yes:
[image: Controlling delegation]
So, instead of providing a selector as we did back in Exploring a simple demonstration, we simply used a class name; the event handler function will only fire if it matches the specified class name.
Tip
We can even apply a data- tag as our check:
$(document).on('keypress', '[data-validation="email"]', function(e) {
 console.log('Keypress detected inside the element');
})

Using the stopPropagation() method as an alternative

As an alternative, we can use an all-jQuery solution in the form of stopPropagation(). This prevents the event from bubbling up the DOM tree, and stops any parent handlers from being notified of the event.
This one-liner is a breeze to implement, although the key to using it is ensuring we add it at the right point in our code. If you've not used it before, then it needs to go within the event handler, immediately after the last command in the handler (as highlighted in the following snippet):
document.ready(function ($) {
 $('div'). on("click", function (event) {
 console.log('You clicked the outer div');
 });
 $('span').on("click", function (event) {
 console.log('You clicked a span inside of a div element');
 event.stopPropagation();
 });
})

As a quick check, try extracting the propagation-js files from the code download that accompanies this book. Save them in the relevant folders within our project area. If we preview them in a browser, we'll see a simple span enclosed within a div. Refer to the following image:
[image: Using the stopPropagation() method as an alternative]
The key to this demo lies within the DOM Inspector. Try clicking on the grey-brown outer ring, or the span within it, and we will see the results of what we've selected appear in the console log, as shown next:
[image: Using the stopPropagation() method as an alternative]
If you comment out the event.stopPropagation() line within the code, the click event attached to div will also be invoked.
Tip
Event propagation should not be stopped unless necessary. There is a useful article at https://css-tricks.com/dangers-stopping-event-propagation/ which discusses the problems you might encounter if propagation is stopped.

Okay, let's change focus and switch to another key concept within event handling. It's time to take a look at using the $.proxy function, and why this is needed, if event delegation doesn't propagate sufficiently for our needs.

Working with Deferreds and Promises

Switching to using Deferreds and Promises will take some time, but is worth the effort put into understanding how they work. To get a feel of the benefits of using Deferreds and Promises, let's take a look at some of the advantages of incorporating them into our code:
	Cleaner method signatures, and uniform return: We can separate out the code that dictates what happens with the outcome of any request, which makes it cleaner to read and allows chaining if desired, as shown next: $.ajax(url, settings);
 settings.success(data, status, xhr);
 settings.error(data, status, errorThrown);
 settings.always(xhr, status)

	Easy to put together: We're not forced to incorporate complex functions to manage handling within each request; this means the core code required to initiate each request is greatly simplified, as shown in the following example: function getEmail(userEmail, onSuccess, onError) {
 $.ajax("/email?" + userEmail, {
 success: onSuccess,
 error: onError
 });
 }

	Easy to chain statements together: The architecture of a Deferred / Promise allows us to chain a number of event handlers together, so that we can fire off a number of methods with a single action, as shown next: $("#button").clickDeferred()
 .then(promptUserforEmail)
 .then(emailValidate)

	Promises always run asynchronously: They can be fired even when we don't know which callbacks will use the values generated by Promises, before the task completes. Promises will store the resulting value, and we can call that value either from existing callbacks, or any that we add after the promise has been generated.
	Exception-style error bubbling: Typically with AJAX, we would have to use a series of if…then…else statements, which makes for a convoluted (and sometimes fragile) way of working. With Promises, we can simply chain together one or more .then() statements to handle any outcome, as shown next:getUser("Alex")
 .then(getFriend, ui.error)
 .then(ui.showFriend, ui.error)

Tip
There is so much more to Promises than we can cover here. For a useful discussion on comparing Promises with standard AJAX requests, check out this discussion at http://stackoverflow.com/a/22562045.

Remember the code we examined back in Using callbacks to handle multiple AJAX requests? The key drawback of using multiple callbacks is the resulting mess (and ultimately the impact on performance of our site) – clearly we need a better alternative!
The beauty about Deferreds and Promises is that it allows us to restructure the code to make it easier to read. This includes not only the commands that we need to run as part of the requests, but also what happens if they succeed or fail. Let's revisit that code extract from earlier, and see what it looks like when rewritten to use Deferreds / Promises:
$.when(
 // Get the HTML, CSS and JS
 $.get("/feature/", function(html) {
 globalStore.html = html;
 }),
 $.get("/assets/feature.css", function(css) {
 globalStore.css = css;
 }),
 $.getScript("/assets/feature.js")
).then(function() {
 // All is ready now, so...add the CSS and HTML to the page
 $("<style />").html(globalStore.css).appendTo("head");
 $("body").append(globalStore.html);
});

Hopefully you will agree that it looks significantly cleaner, and that we can now run multiple requests from a single process, without having to wait for each to complete before moving onto the next request!
Time now for some code, I think – let's make use of Deferreds and Promises, and build a demo that uses AJAX. We'll see how we can use it to respond to form submissions, without the need for a page refresh.

Mastering jQuery

Automating tests with QUnit

Hold on, surely QUnit automates the running of these tests for us anyway?
The answer is yes and no. QUnit automated the tests but only to an extent; we had to run the set of tests manually each time. This is all well and good, but you know what? I'm feeling lazy and don't have the time or inclination to continually run tests by hand, as I am sure you won't either. We can do better than this; it is possible to automate our testing using NodeJS/Grunt and PhantomJS.
Granted, it will take some effort to set up, but it is worth the time saved when tests run automatically as soon as any identified content has been altered.
[image: Automating tests with QUnit]
Let's take a look at what is involved in automating our test:
	We'll begin by installing NodeJS. To do this, browse to http://nodejs.org/ and download the appropriate binary for your system; it is available for Windows, Mac OS, and Linux.
	Once installed, go ahead and open up the NodeJS command prompt and then change to the qunit folder we created at the start of this chapter, in Creating a simple demo.
	At command prompt, enter the following command:
npm install –g grunt-cli

NodeJS needs two files to be created in order to operate correctly; they are package.json and gruntfile.js. Let's go ahead and create them now.

	Switch to a normal text editor of your choice and then in a new file, add the following code, saving it as package.json:{
 "name": "projectName",
 "version": "1.0.0",
 "devDependencies": {
 "grunt": "~0.4.1",
 "grunt-contrib-QUnit": ">=0.2.1",
 "grunt-contrib-watch": ">=0.3.1"
 }
}

	Revert to the NodeJS command prompt and then enter the following:
npm install

	In a separate file, add the following code and save it as gruntfile.js:module.exports = function(grunt) {
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),

 QUnit: {
 all: ['tests/*.html']
 },
 watch: {
 files: ['tests/js/*.js', 'tests/*.html'],
 tasks: ['QUnit']
 }
 });

 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.loadNpmTasks('grunt-contrib-QUnit');
 grunt.registerTask('default', ['QUnit, watch']);
};

	Revert to the NodeJS command prompt again and enter the following:
npm install –g phantomjs

	If all went well, we should see something akin to the following screenshot appear:[image: Automating tests with QUnit]

	Let's now start Grunt and set it to watch for any changes in our code; to do this, run this command in the NodeJS command prompt:
grunt watch

	Open up a copy of qunittest.js, which we created earlier in this chapter, and then save the file—I know this might sound crazy, but it is required to trigger the process in Grunt.
	If all went well, we should see this result appear in the NodeJS window:[image: Automating tests with QUnit]

	Revert to qunittest.js and then change this line as shown here:assert.ok($(txt).val().length <= 8, "There are " + $(txt).val().length + " characters.");

	Save your file and then watch the Grunt window, which should now indicate a failed test:[image: Automating tests with QUnit]

Let's change tack and move on to something else; although we've not covered the use of QUnit in any great depth, it is nevertheless important to try and follow best practices where possible, when using QUnit. Let's take a moment to consider some of these best practices in order to see how they can improve our coding skills.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book – what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a book that you need and would like to see us publish, please send us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail <suggest@packtpub.com>.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Chapter 9. Using the Web Performance APIs

How many times have you had a browser session running with multiple tabs? As a developer, I would expect that to almost be the norm, right?
Now, what if when you switched tabs, content was still playing on the original tab? It's really irritating, right? Sure, we could stop it, but hey, we're busy people with more important things to do…!
Thankfully, this is no longer an issue – in the age of mobile, where conservation of resources is ever more important, we can employ a few tricks to help curb our use. This chapter will introduce you to using the Page Visibility API, and show you how, with some simple changes, you can dramatically reduce the resources used by your site. Over the next few pages, we will cover the following topics:
	Introducing the Page Visibility and requestAnimationFrame APIs
	Detecting and adding support, using jQuery
	Controlling activity using the API
	Incorporating support into practical uses

Ready to make a start? Good! Let's get going...
An introduction to the Page Visibility API

Consider this scenario for a moment, if you will:
You're viewing a content-heavy site on an iPad, which is set to pre-render content. This is beginning to hammer the resources on the device, with the result that battery power is being drained quickly. Can you do anything about it? Well, on that site, probably not – but if it is a site you own, then yes. Welcome to the Page Visibility API.
The Page Visibility API is a nifty little API that detects when content in a browser tab is visible (that is, being viewed), or hidden. Why is this of interest? Simple – if a browser tab is hidden, then there is no point in playing media on the site, or running frequent polls to a service, right?
The net impact of using this API is aimed at reducing the use of resources and (consequently) saving power. After all, your visitors will not thank you if their batteries are drained as a result of visiting a media-heavy site!
Over the next few pages, we're going to visit this library in detail and see how we can use it with jQuery. Let's kick off with a look at browser support for the API.

Chapter 11. Authoring Advanced Plugins

Throughout this book, a common theme has been to use plugins – it's now time to create one!
There are literally thousands of plugins available for use, from ones that might only be a few lines long, to those running into several hundred lines. I'm a great believer in the phrase "where there's a will, there's a way" – it could be argued that plugins satisfy that will, and provide a way of resolving a need or a problem for a user.
Over the next few pages, we'll take a look at developing an advanced plugin from start to finish. Rather than concentrating only on the construction (as such), we'll take a look at some of the tips and tricks we can use to help push our development skills further when working with plugins. We'll cover best practices, and look at some areas where you can improve your current coding skills. Throughout the next few pages, we will cover a number of topics, which will include:
	Best practices and principles
	Detecting signs of a poorly developed plugin
	Creating design patterns for jQuery plugins
	Designing an advanced plugin and making it available for use

Ready to start?
Detecting signs of a poorly developed plugin

Imagine the scenario, if you will – you spend weeks developing a complex plugin, which does everything but the kitchen sink, and leaves anyone watching in awe.
Sounds like the perfect nirvana, right? You publish it on GitHub, create an awesome website, and wait for users to roll in and download your latest creation. You wait…and wait…but get a grand total of zero customers. Okay…so what gives?
Anyone can write code, as I always say. The key to becoming a better jQuery plugin developer is understanding what makes a good plugin, and knowing how to put that into practice. To help with this, let's take a moment to look at some pointers we can use to spot when a plugin is likely to fail:
	You're not making a plugin! The accepted practice is to use one of a handful of plugin patterns. If you're not using one of these patterns (such as the one shown next), then there is a good chance that take-up of your plugin is likely to be low.(function($, window, undefined) {
 $.fn.myPlugin = function(opts) {
 var defaults = {
 // setting your default values for options
 }
 // extend the options from defaults with user's options
 var options = $.extend(defaults, opts || {});
 return this.each(function(){ // jQuery chainability
 // do plugin stuff
 });
})(jQuery, window);

	Although we've defined the undefined in the parameters, we are only using $ and window in the self-invoking function. It shields the plugin from being passed malicious values to undefined, as it will remain as undefined within the plugin.
	You spend time writing code, but miss one of the key elements – preparing documentation! Time and again, I see plugins that have minimal or non-existent documentation. It makes it hard to understand the plugin's makeup, and work out how to use it to its full potential. There are no hard-and-fast rules with documenting, but it is generally accepted that the more the better, and that this should be both inline and external (in the form of a readme or wiki).
	Continuing with the theme of a lack of suitable documentation, developers will be turned off by plugins that have hardcoded styling, or which are too inflexible. It's up to us to consider all possible needs, but to determine if we're going to provide a solution for a particular need. Any styling that is applied to the plugin should either be made available via plugin options, or as a specific class or selector ID within the style sheet – putting it in line is considered bad practice.
	If your plugin requires too much configuration, then this is likely to turn people off. While a larger, more complex plugin should clearly have more options available to end users, there is a limit to what should be provided. Conversely, every plugin should at least have a no-argument default behavior set; users will not appreciate having to set multiple values just to get a plugin working!
	A big turn-off for end users is plugins that don't provide some form of example. At an absolute minimum, a basic "hello world" type example, should always be provided, with a minimal configuration defined. Those plugins that provide more involved examples, or even examples that work with other plugins, are likely to attract more people.
	Some plugins fail for basic reasons. These include: not providing a changelog or using version control, not working across multiple browsers, using an outdated version of jQuery or including it when it isn't really needed (dependencies are too low), or not providing a minified version of the plugin. With Grunt, there is no excuse! We can automate a large part of the basic admin tasks that are expected of developers, such as testing, minifying the plugin, or maintaining version control.
	Finally, plugins can fail for one of two simple reasons: either they are too clever and try to achieve too much (making them difficult to debug), or too simple, where the dependencies on jQuery as a library are not enough to warrant including it.

Clearly a lot to think about! While we can't predict if a plugin will be successful or if take up will be low, we can at least try to minimize the risk of failure by incorporating some (or all) of these tips into our code and development workflow.
At a more practical level though, we can opt to follow any one of a number of design patterns, to help give structure and consistency to our plugin. We touched on this back in Chapter 3, Organizing Your Code. The beauty is that we are free to use similar principles with jQuery plugins too! Let's take a moment to consider some possible examples, before using one to develop a simple plugin.

About the Author

Alex Libby has a background in IT support. He has been involved in supporting end users for almost 20 years in a variety of different environments, and he currently works as a technical analyst, supporting a medium-sized SharePoint estate for an international parts distributor who is based in the UK. Although Alex gets to play with different technologies in his day job, his first true love has always been the open source movement, and, in particular, experimenting with CSS/CSS3, jQuery, and HTML5. To date, Alex has already written eight books based on jQuery, HTML5 video, and CSS for Packt Publishing and has reviewed several more. Mastering jQuery is Alex's ninth book for Packt Publishing.

I would like to thank my family and friends for their support throughout the process and the reviewers for their valuable comments; this book wouldn't be what it is without them!

Using callbacks to handle multiple AJAX requests

When working with AJAX, we can use the $.Callbacks object to manage callback lists – callbacks would be added using the callbacks.add() method, fired using .fire(), and removed using the .remove() method.
Normally we might initiate a single AJAX request if we have decided that content should only appear when needed, and not be present all the time. There is nothing wrong with this – it's a perfectly valid way of working, and reduces the need for page refreshes.
However, if we decided we had to perform multiple requests at the same time, and needed each of them to complete before we could continue, then things will get messy.
// Get the HTML, then get the CSS and JavaScript
$.get("/feature/", function(html) {
 $.get("/assets/feature.css", function(css) {
 $.getScript("/assets/feature.js", function() {

 // All is ready now, so...add CSS and HTML to the page
 $("<style />").html(css).appendTo("head");
 $("body").append(html);
 });
 });
});

We could be waiting for a while!
The problem here is the slow speed of response when working with multiple requests, particularly if all of them have to finish before we can continue. I, for one, certainly don't want to have to wait for a slow responding page to finish!
To avoid what many affectionately term callback hell, we can make use of an alternative – jQuery's Deferreds and Promises. These can be thought of as a special form of AJAX. Over the next few pages, we'll dig into what makes this technology tick, and work through a simple example that you can use as a basis for developing your own ideas in the future.
Tip
There is even a website dedicated to the horrors of callback hell – you can view it at http://callbackhell.com/ - it is definitely worth a read!

Let's take a look at how Deferreds and Promises work within jQuery, and how we can use it to enhance our code.

Animating in a responsive website

How often have you visited a site only to find out that you have to wait for ages between each page load? Sounds familiar?
Our expectations of page transitions have changed over the last few years—the clunky side effects of elements rearranging on a page will not suffice; we expect more from a website. JavaScript-based Single Page Application (SPA) frameworks are often seen as the answer, but at the expense of having to use obtrusive code.
We can do much better than this. We can introduce smoothState.js, a useful plugin created by Miguel Ángel Pérez, that allows us to add transitions to make the whole experience smoother and more enjoyable for visitors. In this example, we're going to use a modified version of the demo provided by the plugin's author; some of the code has been reorganized and cleaned up from the original.
Let's take a look at the plugin in action and see how it can make for a much smoother experience. To do this, perform the following steps:
	From the code download that accompanies this book, extract copies of the following files:	smoothstate.html and smoothstate.css: Save these files in the root area and css subfolder of your project folder, respectively.
	jquery.smoothstate.js: Save this in the js subfolder of your project area; the latest version can be downloaded from https://github.com/miguel-perez/jquery.smoothState.js.
	jquery.min.js: Save this in the js subfolder of your project area.
	animate.css: Save this in the css subfolder of your project area; the latest version is available at http://daneden.github.io/animate.css/.
	The Roboto font: A copy of the two fonts used are in the code download that accompanies this book. Alternatively, they can be downloaded from the Font Squirrel website, at http://www.fontsquirrel.com/fonts/roboto. We only need to select the WOFF font; we will use the light and regular versions of the font in our demo.

	Run the smoothstate.html file in a browser; try clicking on the middle link of the three and see what happens. Notice how it displays the next page, which is transitions.html. Instead of the pause we frequently get when loading new pages, smoothState.js treats the site as if it were a SPA, or single page application. You should see a very simple page display, as shown in this screenshot:[image: Animating in a responsive website]

Traditionally, when faced with this issue, many might resort to an SPA framework in order to fix the issue and improve the transition appearance. Using this approach will work, but at the expense of the benefits gained from using unobtrusive code.
Instead, we can use a mix of jQuery, CSS3, history.pushState(), and progressive enhancement to achieve the same effect, resulting in a better experience for our end users.
Note
It's worth taking a look at the website documentation, available at http://weblinc.github.io/jquery.smoothState.js/index.html. There is a useful tutorial on the CSS-Tricks website, at https://css-tricks.com/add-page-transitions-css-smoothstate-js/.

Maintaining a good user experience should always be at the forefront of any developer's mind—this is more important when working with responsive sites. A key part of this should be to monitor the performance of our animations, in order to ensure that we get a good balance of user experience against the demand on our servers.
There are a few tricks that we can use to help with performance when it comes to using jQuery-based animations on responsive sites. Let's take a look at some of the issues and how we can either mitigate or resolve them.
Considering animation performance on responsive sites

In this modern age of accessing the Internet from any device, the emphasis on user experience is more critical than ever—this is not helped when jQuery is used. Acting as the lowest common denominator, it helps to simplify working with content (particularly for complex animations) but is not optimized for their use.
There are a few issues that we will come across when animating content using jQuery—we've covered some of them earlier in the chapter, in Choosing CSS or jQuery; they apply equally to responsive sites. In addition, there are other considerations we need to be aware of, which include the following:
	Animations that use jQuery will consume a lot of resources; this coupled with content that might not suit a mobile environment (due to its volume) will create a slow experience on desktops. This will be even worse on laptops and mobile devices!
	End users on a mobile device are frequently only interested in getting the information they need; animations may make a site look good but are often not optimized for mobile devices and are likely to slow access and result in the browser crashing.
	jQuery's garbage collection process is frequently known to cause issues; its use of setInterval() in place of requestAnimationFrame() will result in high frame rates, making for an experience that is likely to stutter and show a high rate of frame dropouts.Tip
At the time of writing, there are plans to replace setInterval (and clearInterval) in jQuery with requestAnimationFrame (with clearAnimationFrame).

	If we are using animations—both jQuery or plain CSS—then on some platforms, we frequently need to enable hardware acceleration. While this can help with performance on mobile devices, it can also lead to flickering if hardware-accelerated elements overlap with other elements that are not hardware-accelerated. We will touch on how to enable 3D rendering later in this chapter, in the Improving the appearance of animations section.
	jQuery's .animate increments the element's style attribute on every animation frame; this forces the browser to recalculate the layout and leads to continual refreshes. This is particularly acute on responsive sites, where each element needs to be redrawn each time the screen is resized; this will place additional demands on server resources and impact performance. If desired, plugins such as jQuery Timer Tools (https://github.com/lolmaus/jquery.timer-tools) can be used to throttle back or delay actions so that they are only executed when necessary, or multiple repetitive calls are effectively merged into one single execution.
	If the display state of elements is changed (using display... or display: none), then this has the effect of adding or removing elements from the DOM. This can have an impact on performance, if your DOM is heavy with lots of elements.
	Using jQuery leaves inline styles in the DOM that have very high specificity and that will override our well-maintained CSS. This is a big issue if the viewport is resized and triggers different breakpoints.Note
CSS specificity is where the browser decides which property values are most relevant to the elements and are applied as a result—check out https://css-tricks.com/specifics-on-css-specificity/ for more details.

	As an aside, we lose the separation of concerns (or defining separate sections for our code) as styles are defined in JavaScript files.

Is it possible to reduce or remove these issues? Yes, but it's likely to require some sacrifices; these will depend on what your requirements are and the target devices that need to be supported. Let's take a moment to consider where we can make changes:
	Consider the use of CSS over jQuery where practical, at least for mobile sites; most browsers (with the exception of Opera Mini) support CSS keywords such as translate or transform. As they are native to the browser, this removes the reliance on the extra code being referenced, resulting in the resources and bandwidth usage being saved.
	If animation isn't possible using jQuery or the effort required outweighs the benefits gained, then consider the use of a plugin such as Velocity.js (available from https://github.com/julianshapiro/velocity), as this has been optimized to animate content.Note
It's worth noting that discussions are being held to integrate Velocity.js into jQuery—for more details, see https://github.com/jquery/jquery/issues/2053. There is also a post that is worth reading at http://www.smashingmagazine.com/2014/09/04/animating-without-jquery/, which discusses the use of Velocity in more detail.

	A better alternative is to use the jQuery.Animate-Enhanced plugin or the animate helper from jQuery++; both will convert animations to use CSS3 equivalents by default, where supported.

So, how do we handle animation requests on a responsive site when working with jQuery? There are several ways of doing this; let's explore this key question in more detail.

Designing custom animations

If you've spent any time developing jQuery code that animates objects or elements on a page, you will no doubt have used either the jQuery UI or possibly a plugin, such as jQuery Easing, created by George Smith (http://gsgd.co.uk/sandbox/jquery/easing/).
Both are great ways of animating objects on a page, using easing methods such as easeIn() or easeOutShine(). The trouble is that both require the use of plugins, which add unnecessary baggage to our code; they are also a very safe way of achieving the effect we need. What if I said we don't need either and can produce the same effects just by using jQuery itself?
Before I go through how to do this, let's take a look at a working demo that shows this in action:
	Let's make a start by extracting the relevant files from the code download that accompanies this book—for this demo, we will need copies of the following:	customanimate.html: Save this file in the root area of our project folder
	customanimate.css: Save this file in the css subfolder of our project folder
	customanimate.js: Save this file in the js subfolder of our project folder

Open the Sans font; save this in the font folder of our project folder; alternatively, the font is available at http://www.fontsquirrel.com/fonts/open-sans.

	If you preview the customanimate.html file in a browser and then run the demo, you should see something akin to this screenshot, where the <div> tag is partway through running the animation:[image: Designing custom animations]

So, what happened here? Well, we've used nothing more earth-shattering than a standard .animate() to increase the size of and move the <div> tag to its new location.
There's nothing new here then, right? Wrong, the "new" bit here is actually how we constructed the easing! If you take a look at customanimate.js, you will find this code:
$(document).ready(function() {
 $.extend(jQuery.easing, {
 easeInBackCustom: function(x,t,b,c,d) {
 var s;
 if (s == undefined) s = 2.70158;
 return c*(t/=d)*t*((s+1)*t - s) + b;
 }
 })

All we've done is take the math needed to achieve the same effect and wrapped it in a jQuery object that extends $.easing. We can then reference the new easing method within our code, as follows:
 $("#go").click(function() {
 $("#block").animate({
 ...
 }, 1500, 'easeInBackCustom');
 });
})

This opens up lots of possibilities; we can then replace the custom-easing function with our own creation. A trawl of the Internet threw up lots of possibilities, such as these two examples:
$.easing.easeOutBack = function(t) {
 return 1 - (1 - t) * (1 - t) * (1 - 3*t);
};

$.easing.speedInOut = function(x, t, b, c, d) {
 return (sinh((x - 0.5) * 5) + sinh(-(x - 0.5)) + (sinh(2.5) + Math.sin(-2.5))) / (sinh(2.5) * 1.82);
};

To really get stuck into understanding how easing functions work is outside the scope of this book—if you are interested in the math behind it, then there are several sites on the Internet that explain this in greater detail.
Note
Two examples of how to work with easing functions include http://upshots.org/actionscript/jsas-understanding-easing and http://www.brianwald.com/journal/creating-custom-jquery-easing-animations—note that they do make for dry reading though!

Suffice to say that the best source for the easing functions is the source code for jQuery, where we can view each of the calculations required and use these as a basis for creating our own easing effects.
This is all well and good; it's a great way to achieve good animations without producing complex code that is difficult to understand or debug. But…you know me; I think we can still do better. How? That's easy, what if we can replicate some of the easing effects we might see in CSS transitions in jQuery?
Converting to use with jQuery

At this point, you probably think I really have lost it now; CSS transitions use Bezier curves, which are not supported when working with jQuery's animate() method. So, how can we achieve the same effect?
The answer lies, as always, with a plugin—granted, this goes against what we've talked about in the previous demo though! However, there is a difference: this plugin weighs in at 0.8 KB when compressed; this is significantly smaller than using the jQuery UI or the Easing plugin.
The plugin that we're going to use is the Bez plugin by Robert Grey, available at https://github.com/rdallasgray/bez; this will allow us to use cubic-bezier values, such as 0.23, 1, 0.32, 1, which is the equivalent of easeOutQuint. Let's take a look at this in action:
	We first need to download and install the Bez plugin—we can download it from GitHub at https://github.com/rdallasgray/bez; add a reference to it from within customanimate.html, immediately underneath the link to jQuery.
	Next, open up a copy of customanimate.js; go ahead and alter this line as shown, which replaces the easeInBackCustom action we used earlier: }, 1500, $.bez([0.23, 1, 0.32, 1]));

Save both the files; if you preview the results in a browser, you will see a different action when running the demo as compared to what you saw in the previous example.
So, how did we get here? The trick behind this is a combination of the plugin and the easings.net website. Using easeOutQuint as our example easing, if we first visit http://easings.net/#easeOutQuint, we can see the cubic-bezier values required to produce our effect: 0.86, 0, 0.07, 1. All we need to do is insert this into a call to the Bez plugin and we are all set:
}, 1500, $.bez([0.86, 0, 0.07, 1]));

If, however, we want to create our own cubic-bezier effect, then we can use cubic-bezier.com to create our effect; this will give us the values we need to use, as shown in the following screenshot:
[image: Converting to use with jQuery]
We can then plug these into our object call in exactly the same way as we did in the previous example. The beauty of using this method is that we have an easy route to convert the animations to CSS3 equivalents, should we later decide to reduce our usage of jQuery at some point in the future.
Note
To learn more about the theory behind Bezier curves, take a look at the Wikipedia article available at http://en.wikipedia.org/wiki/B%C3%A9zier_curve.

Okay, so we've covered how to create our own animation-easing functions; what if we wanted to use effects available from existing libraries? No problem, there are some good examples available on the Internet, which include the following:
	http://daneden.github.io/animate.css/: This is the home of the Animate.css library; we can reproduce the effects within this library using the jQuery.Keyframes plugin available at https://github.com/jQueryKeyframes/jQuery.Keyframes.
	https://github.com/yckart/jquery-custom-animations: This library contains a number of different effects, created in a style similar to the jQuery UI; this can be dropped in and the effects can be referenced in a similar fashion to the Designing custom animations demo from earlier in this chapter.
	https://github.com/ThrivingKings/animo.js: Animo.JS takes a different approach; instead of using jQuery's animate() function, it uses its own animo() method to animate objects. It uses the effects from the Animate.css library, created by Dan Eden—although one might argue whether it is worth the extra overhead, it is nonetheless worth a look as a possible source of animations for your projects.
	http://lvivski.com/anima/: It's worth taking a look at this library carefully; the source code contains a number of cubic-bezier values within the easings.js source file. These can be easily lifted into your own code projects if desired or can provide inspiration for your own examples, perhaps.

It's time to put some of the animation concepts we've covered to good use; let's move on and take a look at some of the examples of using animation in our own projects.

Summary

Event handling is key critical to the success of any website or online application. If we get it right, it can make for an engaging user experience; getting it wrong can lead to some unexpected results! Over the last few pages, we've looked at few concepts to help develop our event handling skills; let's take a moment to review what we've learnt.
We kicked off with a quick introduction into event handling, before moving swiftly onto exploring event delegation as one tool where we can benefit from its use in our code. We first looked at the basics of event delegation, before examining the implications of using it, and learning how we can control it within our code.
Next up came a look at $.proxy, where we saw how jQuery sometimes needs a helping hand to ensure that an event is fired within the right context if our code means it doesn't propagate sufficiently high enough up the chain.
We then turned our attention to a brief look at creating custom event types and handlers, before exploring how such event handlers are constructed. We then used the jQuery Multiclick plugin as an example of how we can create these custom event handlers, before rounding up the chapter with a look at using namespacing to ensure that we can bind or unbind the right event handler in our code.
In the next chapter, we'll be looking at some of the visual ways we can enhance our sites – we'll see how applying effects, and managing the resultant effects queue can help either make or break the success of our sites.

Chapter 12. Using jQuery with the Node-WebKit Project

In this modern age, responsive design is the latest buzzword, where websites built using jQuery can work correctly on any device or platform. Nevertheless, this requires an Internet connection—what if we can develop an offline version of the same app?
Enter Node-WebKit (or NW.js, as it is now known). In this chapter, we're going to take a break from exploring jQuery and explore one of the lesser-known ways of using the library instead. You'll see how you can use the power of jQuery, HTML5, and the desktop, mixing them to produce a replica of your site that works offline in any desktop or laptop environment. We'll use it to have a little fun with developing a simple file size viewer that uses jQuery, which can be easily developed into something more complex that can run online or offline, as needed.
In this chapter, we'll cover the following topics:
	Introducing Node-WebKit
	Building a simple site
	Packaging and deploying your app
	Taking things further

Ready to explore the world of Node-WebKit? Let's make a start…
Note
You may see references to NW.js online—this is the new name for Node-WebKit, as of January 2015; you may see both names being used throughout this chapter.

Setting the scene

Imagine a scene, if you will, where a client has asked you to produce a web-based application; they've outlined a specific set of requirements, as follows:
	It must have a simple GUI
	There shouldn't be any duplicates—it must be one version that works on all platforms
	The solution must be easy to install and run
	It needs to be portable so that it can be transferred if we change computers

Hands up if you think a website will suffice? Now, hands up if you haven't read the requirements properly…!
In this instance, a website isn't going to be enough; a desktop application will deal with the duplication requirement, but it may not be easy to use and certainly won't be cross-platform. So, where do we go from here?

Minifying code using NodeJS

A key part of any developer's workflow should be a process to minify the scripts used in a site. This has the benefit of reducing the size of the downloaded content to a page.
We can of course do this manually, but it's a time consuming process which adds little benefit; a smarter way is to let NodeJS take care of this for us. The beauty of doing this means that we can configure Node to run with a package such as grunt-contrib-watch; any changes we make would be minified automatically. There may even be occasions when we decide not to produce a minified file; if we're unsure that the code we are writing is going to work. At times like this, we can instead fire off Grunt from within our text editor, if we're using a package such as Sublime Text.
Tip
If you want to implement that level of control within Sublime Text, then take a look at sublime-grunt, available from https://github.com/tvooo/sublime-grunt.

Okay, let's start with setting up our minification process. For this, we'll use the well-known package, UglifyJS (from https://github.com/mishoo/UglifyJS2), and get Node to automatically check for us:
	We will be using NodeJS for this demo, so if you haven't already done so, go ahead and download the appropriate version for your platform from http://www.nodejs.org, accepting all defaults.
	For this demo, we need to install two packages. UglifyJS provides support for source maps, so we need to install this first. From a NodeJS command prompt, change to the project folder, enter the following command, and then press Enter:
npm install source-map

	Next, enter the following command, and press Enter:
npm install uglify-js

	When the installation has completed, we can run UglifyJS. At the command prompt, enter the following command carefully:
uglifyjs js/jquery.quicktipv2.js --output js/jquery.quicktipv2.min.js --compress dead_code=true,conditionals=true,booleans=true,unused=true,if_return=true,join_vars=true,drop_console=true --mangle --source-map js/jquery.quicktipv2.map

	If all is well, Node will run through the process, similar to this next screenshot:[image: Minifying code using NodeJS]

	At the end, we should have three files in our project area, as shown in the following screenshot:[image: Minifying code using NodeJS]

We're now free to use the minified version of our code within a production environment. While in this instance we've not made much of a saving, you can imagine the results if we were to scale these figures up to cover larger scripts!
Exploring some points of note

The process of compressing scripts should become a de facto part of any developer's workflow. NodeJS makes it easy to add, although there are some tips that will help make compressing files easier and more productive:
	The default configuration for UglifyJS will only produce files that show little compression. Getting better results requires careful reading of all the options available, to get an understanding of which one may suit your needs and is likely to produce the best results.
	We've included the source map option within our compression process. We can use this to relate issues appearing to the original source code. Enabling source map support will differ between browsers (for those that support it); in Firefox for example, press F12 to show the Developer Toolbar, then click on the cog and select Show Original Sources:[image: Exploring some points of note]

	It is worth checking to see if minified versions of files used in your project are already available. For example, does your project use plugins where minified versions have already been provided? If so, then all we need to do is concatenate them into one file; minifying them again is likely to cause problems, and break functionality in the file.

Minifying files is not a black art, but is equally not an exact science too. It is difficult to know what improvement you will get in terms of file size, before compressing them. You may get some results that you didn't expect to see. It's worth exploring one such example now.

Working through a real example

While researching material for this book, I tried minifying one of the Drupal files used on the Packt Publishing site as a test. The original weighed in at 590 KB; a compressed version using the same configuration options as in our demo, produced a file that was 492 KB.
What does this tell us? Well, there are a couple of things to note:
	It is important to maintain a realistic sense of expectation. Compressing files is a useful trick we use, but it will not always produce the results we need.
	We've used UglifyJS (version 2). This is really easy to use, but comes with a trade-off in terms of raw compression ability. There will be some instances where it won't suit our requirements, but this shouldn't be seen as a failing. There are dozens of compressors available; we simply will have to choose a different alternative!
	To really get a significant reduction in size, it may be necessary to use gzip to compress the file, and configure the server to decompress on the fly. This will add an overhead to processing the page, which needs to be factored into our optimization work.

Instead, it may be a better alternative to work through each script to determine what is and isn't being used. We can of course do this manually, but hey – you know me by now: why do it yourself when you can put it off to something else to do it for you (to badly misquote a phrase)? Enter Node! Let's take a look at unusedjs, which we can use to give us an indication of exactly how much extra code our scripts contain.
Tip
We've concentrated on minifying one file, but it is a cinch to change the configuration to minify any file automatically, by using wildcard entries instead.

Applying custom easing functions to effects

If someone mentions the word "easing" to you, I'll bet one of two things will happen:
	You will most likely think that you'll need to use jQuery UI, which has the potential to add a fairly significant chunk of code to the page
	You'll run away, at the thought of having to work out some horrendous math!

The irony here though, is that the answer to both could be yes and no (at least to the first part of the second comment). Hold on – how come?
The reason for this is that you most certainly don't need jQuery UI to provide special easing functions. Granted, if you are already using it, then it would make sense to use the effects contained within. While you might have to work out some maths, this would only be necessary if you really want to get stuck into complex formulae, which isn't always necessary. Intrigued? Let me explain more.
Adding an easing to code need not be any more than a simple function that uses any one of five different values, as shown in the following table:
	
Value

	
Purpose

	

x

	

null

Note that although x is always included, it is nearly always set as a null value

	

t

	
Time elapsed.

	

b

	
Initial value

	

c

	
Amount of change

	

d

	
Duration

In the right combination, they can be used to produce an easing, such as the easeOutCirc effect, available within jQuery UI:
$.easing.easeOutCirc= function (x, t, b, c, d) {
 return c * Math.sqrt(1 - (t=t/d-1)*t) + b;
}

Taking it further, we can always work out our own custom easing functions. A good example is outlined at http://tumblr.ximi.io/post/9587655506/custom-easing-function-in-jquery, along with comments indicating what needs to happen to make it work in jQuery. As an alternative, you can also try http://gizma.com/easing/, which lists a number of examples of similar effects.
I think it's time for us to get practical. Let's dive in and make use of these values to create our own easing function. We'll start with adding a predefined easing to one of our previous examples, before stripping it out and replacing it with a custom creation.
Adding a custom easing to our effect

We could of course use the likes of the Easing plugin which is available to download from http://gsgd.co.uk/sandbox/jquery/easing/ or even jQuery UI itself. There is no need though. Adding a basic easing effect only requires a few lines of code.
Although the math involved may not be easy, it is a cinch to add in a specific easing value. Let's take a look at a couple of examples:
	For this demo, we'll start by extracting the relevant files from the code download that accompanies this book. We'll need the slidefade.html, slidefade.js, jquery.min.js, and slidefade.css files. These need to be saved to the relevant folders within our project area.
	In a copy of slidefade.js, we need to add our easing. Add the following code immediately at the start of the file, before the slideFadeToggle() function:$.easing.easeOutCirc= function (x, t, b, c, d) {
 return c * Math.sqrt(1 - (t=t/d-1)*t) + b;
}

	Although we've added our easing effect, we still need to tell our event handler to use it. For this, we need to modify the code as shown next:$(document).ready(function() {
 $("#sfbutton").on("click", function() {
 $(this).next().slideFadeToggle(1000, 'easeOutCirc');
 });
});

	Save the files as slidefadeeasing.html, slidefadeeasing.css, and slidefadeeasing.js, then preview the results in a browser. If all is well, we should notice a difference in how the <div> element collapses and fades away to nothing.

At this stage, we have a perfect basis for creating our own custom easing functions. To test this, try the following:
	Browse to the Custom Easing Function Explorer site, which is located at http://www.madeinflex.com/img/entries/2007/05/customeasingexplorer.html, and then using the sliders, set the following values:	Offset: 420
	P1: 900
	P2: -144
	P3: 660
	P4: 686
	P5: 868

	This will produce the following equation function:function(t:Number, b:Number, c:Number, d:Number):Number {
 var ts:Number=(t/=d)*t;
 var tc:Number=ts*t;
 return b+c*(21.33482142857142*tc*ts + - 66.94196428571428*ts*ts + 75.26785714285714*tc + - 34.01785714285714*ts + 5.357142857142857*t);
}

	As it stands, our equation won't work when used in our code; we need to edit it. Remove all instances of :Number, then add an x before the t in the parameters. The code will look like the following when edited – I've assigned an easing name to it:$.easing.alexCustom = function(x, t, b, c, d) {
 var ts=(t/=d)*t;
 var tc=ts*t;
 return b+c*(21.33482142857142*tc*ts + - 66.94196428571428*ts*ts + 75.26785714285714*tc + - 34.01785714285714*ts + 5.357142857142857*t);
}

	Drop this into slidefade.js, then amend the easing name used in the document.ready() block, and run the code. If all is well, our new custom easing will be used when animating the <div> element.

This opens up lots of possibilities. It is feasible to write the functions we've just generated manually, but it takes a lot of effort. The best result is to use an easing function generator to produce the results for us.
Now, we can continue to work with functions such as the two we've examined here, but this seems like a tough nut to have to crack each time we want to provide some variety when animating elements! We could equally be lazy, and simply import effects from jQuery UI, but that also brings across a lot of redundant baggage; jQuery should be about providing a light touch approach!
Instead, we can use a far easier option. While many might initially be scared of using Bezier curves, some kind souls have already done most of the heavy lifting for us, which makes it a breeze to use when creating effects.

Using Bezier curves in effects

A question – hands up if you can work out what Renault and Citroen have in common, apart from being two rival care manufacturers? The answer is the subject of our next topic – Bezier curves!
Yes, it may be hard to believe, but Bezier curves were used to design car bodies at Renault back in 1962, although Citroen beat them to it, using them as early as 1959.
However, I digress – we're here to look at using Bezier curves with jQuery, such as the next example:
[image: Using Bezier curves in effects]
Tip
You can view this example at http://cubic-bezier.com/#.25,.99,.73,.44.

These are not supported by default; an attempt was made to incorporate support for them, which wasn't successful. Instead, the easiest way to include them is to use the Bez plugin, which is available from https://github.com/rdallasgray/bez. To see how easy it is to use, let's take a look at it in action.
Adding Bezier curve support

There are a number of online sites that show off examples of easing functions; my personal favorites are http://easings.net/ and http://www.cubic-bezier.com.
The former, by Andrey Sitnik, is one we visited back in Chapter 6, Animating jQuery. This provides working examples of all the easings available with jQuery. If we click on one, we can see various ways they can either be created or used within jQuery.
The easiest way to provide support is using the aforementioned Bez plugin. I think it's time for a short demo now:
	For this demo, we'll start by extracting the relevant files from a copy of the code download that accompanies this book. We'll need the blindtoggle.html, jquery.min.css, blindtoggle.css, and jquery.bez.min.js files. These need to be stored in the relevant subfolders of our project area.
	In a new file, let's go ahead and create the jQuery effect. In this instance, add the following to a new file, saving it as blindtoggle.js within the js subfolder of our project area:jQuery.fn.blindToggle = function(speed, easing, callback) {
 var h = this.height() + parseInt(this.css('paddingTop')) +
 parseInt(this.css('paddingBottom'));
 return this.animate({
 marginTop: parseInt(this.css('marginTop')) <0 ? 0 : -h},
 speed, easing, callback
);
};

$(document).ready(function() {
 var $box = $('#box').wrap('<div id="box-outer"></div>');
 $('#blind').click(function() {
 $box.blindToggle('slow', $.bez([.25,.99,.73,.44]));
 });
});

	If we preview the results in a browser, we can see the text first scroll up, followed quickly by the brown background, as seen in the next image:[image: Adding Bezier curve support]

It seems like a fair bit of code, but the real key to this demo lies in the following line:
$box.blindToggle('slow', $.bez([.25,.99,.73,.44]));

We're using the $.bez plugin to create our easing functions from cubic-bezier values. The main reason for this is to avoid the need to provide both CSS3 and jQuery based cubic-bezier functions; the two are not mutually compatible. The plugin gets around this by allowing us to provide easing functions as cubic-bezier values, to match those that can be used in style sheets.
Adding cubic-bezier support to our code opens up a world of possibilities. To get you started, following are some links as inspiration:
	Want to replace the standard jQuery effects such as easeOutCubic? No problem – http://rapiddg.com/blog/css3-transiton-extras-jquery-easing-custom-bezier-curves has a list of cubic-bezier values that will provide the equivalent functionality using CSS.
	If you happen to work with CSS preprocessors such as Less, then Kirk Strobeck has a list of easing functions for Less, which is available at https://github.com/kirkstrobeck/bootstrap/blob/master/less/easing.less.
	We talked briefly about the tool available at http://www.cubic-bezier.com, for working out the co-ordinate values. You can read about the inspiration behind this awesome tool, from the creator Lea Verou at http://lea.verou.me/2011/09/a-better-tool-for-cubic-bezier-easing/. An alternative tool is also available at http://matthewlein.com/ceaser/, although this is not so easy to use, and is geared more towards CSS values.

It's worth spending time getting familiar with using cubic-bezier values. It's a cinch to provide them, so it's over to you to create some really cool effects!

Using pure CSS as an alternative

When developing with jQuery, it's all too easy to fall into the trap of thinking that the effects must be provided by jQuery. It's a perfectly understandable mistake to make.
The key to becoming a more rounded developer is to understand the impact of using jQuery to provide such an effect.
On older browsers, we may not have had a choice. However, on newer browsers, we do. Instead of simply using an effect such as slideDown(), consider whether you can achieve the same (or very similar) effect using CSS. For example, how about trying the following as an alternative to slideDown():
.slider {transition: height 2s linear; height: 100px;
background: red;()}
.slider.down { height: 500px; }

We can then shift our focus to simply changing the assigned CSS class, thus:
$('.toggler').click(function(){
 $('.slider').toggleClass('down');
});

Ah, but – this is a book about mastering jQuery, right? And why would we want to avoid using jQuery code? Well – to quote Polonius from Shakespeare's Hamlet - "…Though this be madness, yet there is method in't". Or, to put it another way, there is a very sensible reason for following this principle.
jQuery is an inherently heavy library, weighing at 82 KB for a default minified copy of version 2.1.3. Granted, work is being done to remove redundant functionality, and yes, we can always remove elements we don't need.
But, jQuery is resource hungry; this puts an unnecessary burden on your site. Instead, it's far more sensible to use functionality such as toggleClass() – as we have here – to switch classes. We can then maintain separation with CSS classes being stored in the style sheet.
It all comes down to your requirements. If, for example, you only need to produce a couple of effects, then there is little point in pulling in jQuery for this job. Instead, we can use CSS to create these effects, and leave jQuery for where it will add most value in providing the heavy lifting within the site itself.
Note
To prove a point, have a look at the replacejquery.html demo in the code download that accompanies this book. You will need to extract the replacejquery.css file too, to get it to work. This code creates a very basic, but functional slider effect. Look carefully, and you should not see any jQuery in sight…!

Now, don't get me wrong. There may be some instances where jQuery is a must (if for example supporting an older browser), or circumstances dictate that a neater option requires use of the library (we can't chain when using pure CSS). In these cases, we have to accept the extra burden.
To prove though that this should be the exception rather than the rule, following are some examples to entice you:
	Take a look at the well-known library animate.css by Dan Eden (available at http://daneden.github.io/animate.css/). This contains lots of CSS-only animations that can be imported into your code. If you do need to use jQuery, then the Animo jquery plugin at http://labs.bigroomstudios.com/libraries/animo-js is worth a look – this uses the animate.css library.
	Have a look at http://rapiddg.com/blog/css3-transiton-extras-jquery-easing-custom-bezier-curves. In the table about half way down, is a list of Bezier curve equivalents for most (if not all) of the easing effects available when using jQuery. The trick here is to not use the extra functions that we've created in previous examples, but to simply use animate() and the Bez plugin. The latter will be cached, helping to reduce the load on the server too!
	A simple, but effective example of using CSS3 to provide a simple image fade-in is available at http://cssnerd.com/2012/04/03/jquery-like-pure-css3-image-fade-in/. The fade transition could use a slightly longer period, but it shows the effect well.

The key message here is that it isn't always necessary to use jQuery – part of becoming a better developer is to work out when we should and should not resort to using a sledge hammer to crack that nut!
Okay, time to crack on (sorry, pun intended). Let's take a quick look at adding callbacks, and how with a change of mindset, we can replace this with an improved alternative that makes for easier use within jQuery.

Adding WebP support to jQuery

At this point, I have a slight confession to make: adding full-blown WebP support to jQuery will probably be outside the scope of this book, let alone fill most of its pages!
Note
WebP is a relatively new image format created by Google, which offers better compression than standard PNG files—you can read more about it at https://developers.google.com/speed/webp/. At present, both Chrome and Opera support this format natively; other browsers will display WebP images once support is added.

The next demo is really about how we can make the switch between two different ways of presenting content on screen, depending on whether our browser supports the newer format. A good example of this is where we might use CSS3 animation wherever possible and fall back to using jQuery for those browsers that do not support CSS3 animation natively.
In our next demo, we're going to use a similar principle to create a monkey patch that overrides the .hasClass() method in order to automatically switch to the WebP format images, where supported.
Note
If you want to learn more, there is a useful discussion on how to get started with the format at http://blog.teamtreehouse.com/getting-started-webp-image-format.

Getting started

For the purpose of this demo, we will need to avail ourselves of an image in two different formats; I will assume JPEG has been used as our base format. The other image, of course, needs to be in the WebP format!
If you do not have the means already in place to convert your image to the WebP format, then you can do this using tools provided by Google, which are available for download at https://developers.google.com/speed/webp/download. Versions for Windows, Linux, and Mac OS are available for download here—for this exercise, I will assume that you are using Windows:
	On the download page, click on http://downloads.webmproject.org/releases/webp/index.html and then look for libwebp-0.4.2-windows-x64.zip (if you are still using a 32-bit platform for Windows, then please select the x86 version).
	Once downloaded, extract the libwebp-0.4.2-windows-x64 folder to a safe folder within your project folder and then navigate to the bin folder within it.
	Open up a second Explorer view, then navigate to where your image is stored, and copy it into the bin folder.
	Open up command prompt and then navigate to C:\libwebp-0.4.2-windows-x64\bin.
	At the prompt, enter this command, replacing both the names with the names of your JPEG and WebP images, respectively:
cwebp <name of JPG image> -o <name of WebP image>

	If all is well, we will get a screen similar to the following screenshot, along with our WebP format image in the bin folder:[image: Getting started]

	The last step is to copy the images into our project folder, so they are ready to be used for the next stage of our demo.

Creating our patch

Now that we have our images prepared, we can go ahead and set up the markup for our demo:
	Go ahead and copy the following code into a new file, saving it as replacewebp.html:<!DOCTYPE html>
<head>
 <title>Demo: supporting WebP images</title>
 <script src="js/jquery.js"></script>
 <script src="js/jquery.replacewebp.js"></script>
</head>
<body>

</body>
</html>

	Next, we need to add in our monkey patch—in a new file, add the following code and save it as jquery.replacewebp.js. This is a little more involved, so we'll go through it in chunks, beginning with the standard declarations:(function($){
 var hasClass = $.fn.hasClass;
 $.fn.hasClass = function(value) {
 var orig = hasClass.apply(this, arguments);
 var supported, callback;

	Next comes the function that performs the test to see whether our browser supports the use of the WebP image format; add the following code immediately below the variable assignments:function testWebP(callback) {
 var webP = new Image();
 webP.src = "data:image/webp; base64,UklGRi4AAABX"
 + "RUJQVlA4TCEAAAAvAUAAEB8wAiMw"
 + "AgSSNtse/cXjxyCCmrYNWPwmHRH9jwMA";
 webP.onload = webP.onerror = function () {
 callback(webP.height == 2);
 };
};

	Next, we make use of the testWebP function to determine whether our browser can support the WebP image format—if it can, we alter the file extension used to .webp, as follows:window.onload = function() {
 testWebP(function(supported) {
 console.log("WebP 0.2.0 " + (supported ? "supported!" : "not
 supported."));
 $('.webp').each(function() {
 if (supported) {
 src = $(this).attr('src');
 $(this).attr('src', src.substr(0, src.length-3) + 'webp');
 console.log("Image switched to WebP format");
 }
 })
});
}

	We finish off our function by executing the original version of our function, before terminating it with the closing brackets normally associated with an IIFE: return orig;
 };
})(:jQuery);

	We then need to add one more function—this is used to initiate the call to .hasClass(); go ahead and add the following lines of code below the monkey patch function:$(document).ready(function(){
 if ($("img").hasClass("webp")) {
 $("img").css("width", "80%");
 }
});

	If all went well, when we run our demo, we will see an image of an Phalaenopsis, or Moth Orchid, as shown in the following screenshot:[image: Creating our patch]

There is nothing out of the ordinary at this point; in fact, you're probably wondering what we've produced, right?
Aha! You'll see the answer to this question if you inspect the source using a DOM inspector, such as Firebug, as shown here:
[image: Creating our patch]
Notice how it is showing a JPEG format image? That's because Firefox doesn't natively support this format out of the box; only Google Chrome does:
[image: Creating our patch]
If you switch to using Google Chrome, then you can view the source by pressing Ctrl + Shift + I. You can clearly see the change in the format being used. If you are still in doubt, you can even take a look at the Console tab of Google Chrome. Here, it clearly shows that the patch has been referenced, as it displays the two messages that you expect to see:
[image: Creating our patch]
We've created our patch and it seems to work fine—that's all that we need to do, right? Wrong, there are more steps that we should consider, some of which may even prevent us from releasing the patch to a wider audience, at least for the time being.
There are some points that we need to consider and some actions that we may need to take as a result; let's pause for a moment and consider where we need to go from here, in terms of development.

Taking things further

In this example, we've overwritten an existing method as a means to illustrate duck punching—in reality, we will need to spend a little more time finessing our patch before we can release it!
The principle reason for this is the age-old issue of downloading more content than we really need; to prove this, take a look at the Resources tab of Google Chrome, when running the demo in that browser:
[image: Taking things further]
As if we need further confirmation, this extract from the Timeline tab also confirms the presence of both the JPEG and WebP images being called and the resulting impact on download times:
[image: Taking things further]
We created a patch here to illustrate what can be done; in reality, we will very likely include code to perform different actions on our content. As a start, we can do the following:
	Include support for more image formats—this can include JPEG, GIF, or SVG.
	Hardcode the code to accept one image format; we can extend the usability of our patch by making it more generic.
	jQuery is moving more toward a plugin-based architecture; should we really be considering patching the core code? There may be more mileage in creating a hook within the code, which then allows you to extend the existing functionality with a new plugin.
	We used .hasClass() as the basis for overriding an existing method; is this really the most appropriate thing to do? Although at face value it may appear to be useful, in reality, others may not agree with our choice of overriding .hasClass and consider other methods more useful.

There are plenty of questions that may be raised and need answering; it's only as a result of careful consideration that will we maximize any opportunity of our patch being successful and potentially consider it for submission to the core.
Let's change tack and switch to examining a key part of monkey patching. The process has its risks, so let's take a moment to consider some of these risks and the impact these may have on our work.

Using the API in a practical context

The API can be used in a variety of different contexts. The classic is usually to help control playback of video or audio, although it can be used with other APIs such as the Battery API, to prevent content being displayed at all if power levels are too low.
Let's take a moment to delve into some practical examples, so we can see how easy it is to implement the API.
Pausing video or audio

One of the most common uses of the API is to control playback of audio or media such as videos. In our first example, we're going to use the API to play or pause a video when switching between tabs. Let's delve in and take a look.
For this demo, we'll use a couple of additional items – the Dynamic Favicons library this is available from http://softwareas.com/dynamic-favicons/. Although a couple of years old, it still works OK with current versions of jQuery. The videos came from the Big Buck Bunny project website, at https://peach.blender.org.
Note
The videos for this demo are from the Blender Foundation, and are (c) copyright 2008, Blender Foundation / www.bigbuckbunny.org.

Right! Let's get cracking:
	As always, we need to start somewhere. For this demo, go ahead and extract the pausevideo demo folder from within the code download that accompanies this book.
	Open the pausevideo.js file. This contains the code to play or pause the video, using the jquery-visibility plugin. Refer to the following code:var $video = $('#videoElement');

$(document).on('show.visibility', function() {
 console.log('Page visible');
 favicon.change("img/playing.png");
 $video[0].play();
});

$(document).on('hide.visibility', function() {
 console.log('Page hidden');
 favicon.change("img/paused.png");
 $video[0].pause();
});

	The plugin is very simple. It exposes two methods, namely show.visibility and hide.visibility. Try running the demo now. If all is well, we should see the Big Buck Bunny video play; it will pause when we switch tabs. Following is the screenshot of the video:[image: Pausing video or audio]

	In addition, the window's title is updated using the favicon.js library. It shows a pause symbol when we switch tabs, as seen in the next image:[image: Pausing video or audio]

That was easy, huh? That's the beauty of the API. It is very simple, but works with a variety of different tools. Let's prove this, by incorporating support for the API into a Content Management System (CMS), such as WordPress.

Adding support to a CMS

So far, we've seen how easy it is to incorporate support for the standard within static page sites – but what about CMS systems, such as WordPress, I hear you ask?
Well, the API can easily be used here too. Rather than talk about it, let's take a look and see how we can add it in. For this demo, I will use WordPress, although the principles will equally apply to other CMS systems such as Joomla. The plugin I will use is my own creation.
It should be noted that you should have a working WordPress installation available, either online or as a self-hosted version, and that you have some familiarity installing plugins.
Note
Please note – the jquery-pva.php plugin is only intended for development purposes; it needs further work before it can be used in a production environment.

Okay, let's start:
	We need to make changes to the functions.php file within a theme. For this purpose, I will assume you are using the Twenty Fourteen theme. Open functions.php, and then add the following code:function pausevideos() {
 wp_register_script('pausevideo', plugins_url('/jquery- pva/pausevideo.js'), array('jquery'),'1.1', true);
 wp_enqueue_script('pausevideo');
}

add_action('wp_enqueue_scripts', 'pausevideos');

	From the code download that accompanies this book, find and extract the jquery-pva folder, then copy it to your WordPress installation; it needs to go into the plugins folder. Return to your WordPress installation, then activate the plugin in the usual way.
	Next, log into your WordPress Admin area, then click on Settings | PVA Options, and enter the version number of jQuery that you would like to use. I will assume 2.1.3 has been chosen. Click on Save Changes for it to take effect. Refer to the following image:[image: Adding support to a CMS]

At this point, we can begin to use the library. If we upload a video and add it to a post, it will show the time elapsed when we begin to play it; this will pause when we switch tabs:
[image: Adding support to a CMS]
To confirm it is working, it is worth looking in the source, using a DOM Inspector. If all is well, we should see the following links. The first link would confirm that the Page Visibility library is referenced, as shown next:
[image: Adding support to a CMS]
The second link would confirm that our script is being called, as seen in the following image:
[image: Adding support to a CMS]
As we can see, the API certainly has its uses! Throughout this chapter, I've tried to keep the code relatively simple, so that it is easily picked up. It's now over to you to experiment and take it further - perhaps I can give you some ideas for inspiration?

Exploring ideas for examples

The basic principles of the Page Visibility API are simple to implement, so the level of complexity that we go to is only limited by one's imagination. During my research, I came across some ideas for inspiration – hopefully the following will give you a flavor of what is possible:
	Animations! Sometimes we can get issues with synching animations, if a tab is not active. http://greensock.com/forums/topic/9059-cross-browser-to-detect-tab-or-window-is-active-so-animations-stay-in-sync-using-html5-visibility-api/ explores some of the tips available to help work around some of these issues.
	This next one could either freak you, or just be plain irritating – take a look at http://blog.frankmtaylor.com/2014/03/07/page-visibility-and-speech-synthesis-how-to-make-web-pages-sound-needy/, where the author has mixed both the Page Visibility and Speech Synthesis APIs. Be warned – he counsels against mixing the two; let us just say that this is likely to be more of a turn off! (It's included here for technical reasons only – not because we should do it.)
	A somewhat more useful technique is to use the Page Visibility API to reduce the number of checks for new emails or news feeds. The API would check to see if the tab is hidden, and reduce the frequency of requesting updates until the tab becomes active again. The developer Raymond Camden has explored the basics required to do this, so head over to his site to learn more, at http://www.raymondcamden.com/2013/05/28/Using-the-Page-Visibility-API.
	To really mix things up, we can instigate some useful notifications, using the Page Visibility, Web Notification, and Vibration APIs at the same time. Have a look at http://www.binpress.com/tutorial/building-useful-notifications-with-html5-apis/163 for ideas on how to mix the three together within the site or application.

Okay, I think it's time for a change. Let's move on and take a look at another API that was created around the same time as the Page Visibility API, and works using similar principles to help reduce demand on resources.
I'm of course referring to the requestAnimationFrame API. Let's delve in and find out what it is, what makes it tick, and why such a simple API can be a real boon to us developers.

 Index

 A

 	Abstract Pattern	about / Builder Pattern

 	Adapter Pattern	about / The Adapter Pattern
	advantages / Advantages and disadvantages of the Adapter Pattern
	drawbacks / Advantages and disadvantages of the Adapter Pattern

 	advanced contact form	creating, AJAX used / Creating an advanced contact form using AJAX, Modifying our advance contact form

 	advanced file upload form	developing, jQuery used / Developing an advanced file upload form using jQuery

 	advanced plugin	designing / Designing an advanced plugin

 	AJAX	used, for creating advanced contact form / Creating an advanced contact form using AJAX, Modifying our advance contact form
	history / Revisiting AJAX
	defining / Defining AJAX
	used, for creating simple example / Creating a simple example using AJAX
	used, for adding file upload capabilities / Adding file upload capabilities using AJAX
	best practices / Detailing AJAX best practices

 	ajax() object	reference link / Creating a simple example using AJAX

 	AJAX content	caching, localStorage used / Using localStorage to cache AJAX content

 	AMD	used, for loading jQuery / Using the AMD approach to load jQuery

 	Anima.js	reference link / Converting to use with jQuery

 	animate() method	exploring / Exploring the animate() method as the basis for effects

 	animate.css	reference link / Animating in a responsive website

 	animate.css library	reference link / Using pure CSS as an alternative

 	animating multiple objects, JavaScript or CSS	reference link / Choosing CSS or jQuery

 	animation	versus effects / Exploring the differences between animation and effects
	reference link / Exploring the concept

 	Animation Cheat Sheet	reference link / Handling animation requests on a responsive site

 	animation performance	considering, on responsive sites / Considering animation performance on responsive sites

 	animation requests	handling, on responsive site / Handling animation requests on a responsive site

 	animations	reference link, for improvements / Improving jQuery animations
	apperance, improving of / Improving the appearance of animations
	converting, for automated CSS usage / Converting animations to use CSS3 automatically
	reference link / Implementing best practices

 	animations and transitions affect performance	reference link / Improving the appearance of animations

 	animation support, jQuery	about / Updating animation support in jQuery
	demo, creating / Creating our demo

 	Animo.JS	reference link / Converting to use with jQuery

 	Animo jquery plugin	reference link / Using pure CSS as an alternative

 	Animsition	reference link / Handling animation requests on a responsive site

 	app	packaging / Packaging and deploying your app
	deploying / Packaging and deploying your app
	reference link, for packaging and distributing / Packaging and deploying your app

 	application	installing / Installing and building our first application
	building / Installing and building our first application
	debugging / Debugging your application
	deploying / Deploying your application

 	apply() function	reference link / Creating a clickToggle handler

 	Asynchronous Module Definition (AMD)	about / Installing jQuery using Bower

 	automated perf optimization	references / Implementing best practices

 B

 	basic form	creating / Creating a basic form

 	behavioral patterns	about / Categorizing patterns

 	behaviors	replacing / Replacing or modifying existing behaviors
	modifying / Replacing or modifying existing behaviors

 	Be Moved	URL / Building a parallax scrolling page

 	BenchmarkJS	URL / Monitoring the speed of jQuery using Firebug

 	best practices, AJAX / Detailing AJAX best practices

 	best practices, QUnit / Exploring best practices when using QUnit

 	bezier-easing	reference link / Falling back on jQuery animations

 	Bezier curve	reference link / Using pure CSS as an alternative

 	Bezier curves	reference link / Converting to use with jQuery
	using, in effects / Using Bezier curves in effects

 	Bezier curve support	adding / Adding Bezier curve support

 	Bez plugin	references / Converting to use with jQuery, Considering the impact of the change
	reference link / Using Bezier curves in effects

 	Blender Foundation	URL / Pausing video or audio

 	BlueImp plugin configuration	dissecting / Dissecting the BlueImp plugin configuration

 	boilerplate	used, for rebuilding plugin / Rebuilding our plugin using boilerplate

 	Bootstrap	URL / Rebuilding our plugin using boilerplate

 	Bower	used, for installing jQuery / Installing jQuery using Bower
	URL / Distributing or applying patches
	used, for packaging plugin / Packaging our plugin using Bower
	reference link / Packaging our plugin using Bower

 	Builder Pattern	about / Builder Pattern
	advantages / Advantages and disadvantages of the Builder Pattern
	disadvantages / Advantages and disadvantages of the Builder Pattern

 C

 	Calibreapp	URL / Monitoring the speed of jQuery using Firebug

 	callback hell	about / Using callbacks to handle multiple AJAX requests
	reference link / Using callbacks to handle multiple AJAX requests

 	callbacks	used, for handling multiple AJAX requests / Using callbacks to handle multiple AJAX requests
	adding, to effects / Adding callbacks to our effects

 	callbacks, in jQuery	reference link / Creating a basic example

 	CamanJS	filters, applying with / Applying filters with CamanJS
	about / Introducing CamanJS as a plugin
	URL / Introducing CamanJS as a plugin
	simple demo, building / Building a simple demo
	creative example / Getting really creative
	reference link, for example / Getting really creative

 	Can I use	reference link / Handling animation requests on a responsive site

 	Can I Use	reference link / Introducing cssAnimate

 	CDN	using / Using a CDN
	URL / Introducing CamanJS as a plugin

 	CDN links	about / Using a CDN

 	Ceaser	reference link / Introducing easing functions

 	clickToggle handler	creating / Creating a clickToggle handler

 	code	enhancing, with Deferreds / Enhancing your code with jQuery Deferreds and Promises
	enhancing, with Promises / Enhancing your code with jQuery Deferreds and Promises
	minifying, NodeJS used / Minifying code using NodeJS

 	CodeCanyon	reference link / Getting really creative

 	CodePen	reference link / Using the requestAnimationFrame API

 	CodePen example	reference link / Creating our demo

 	Codrops demo	about / Animating rollover buttons

 	Colorimazer	URL / Getting really creative

 	colors	manipulating, in images / Manipulating colors in images

 	CommonJS	about / Using NodeJS to install jQuery

 	Complete Widget Factory	about / Introducing design patterns

 	Composite Pattern	about / The Composite Pattern
	advantages / Advantages and disadvantages of the Composite Pattern
	drawbacks / Advantages and disadvantages of the Composite Pattern

 	configuration options, $.ajax object	url / Defining AJAX
	data / Defining AJAX
	error / Defining AJAX
	dataType / Defining AJAX
	Success / Defining AJAX
	type / Defining AJAX
	reference link / Defining AJAX

 	configuration options, AJAX-enabled code	url / Creating a simple example using AJAX
	type / Creating a simple example using AJAX
	cache / Creating a simple example using AJAX
	data / Creating a simple example using AJAX
	datatype / Creating a simple example using AJAX
	jsonp / Creating a simple example using AJAX
	statusCode / Creating a simple example using AJAX

 	consistent code style, jQuery	reference link / Exploring best practices and principles

 	content	animating, for mobile devices / Animating content for mobile devices
	sliding, with slide-fade Toggle / Sliding content with a slide-fade Toggle
	controlling, with jQuery's Promises / Controlling content with jQuery's Promises

 	content files	dissecting / Dissecting our content files
	window.js, exploring / Exploring window.js
	BlueImp plugin configuration, dissecting / Dissecting the BlueImp plugin configuration
	project creation, automating / Automating the creation of our project

 	Core library	patching, on run / Patching the library on the run

 	Costa Coffee	URL / Building a parallax scrolling page

 	creational patterns	about / Categorizing patterns

 	Cross-Origin Resource Sharing (CORS) / Revisiting AJAX

 	CSS	selecting / Choosing CSS or jQuery

 	CSS-based animations	working with / Working with CSS-based animations

 	CSS-Tricks	reference link / Animating in a responsive website

 	CSS3	reference link / Using pure CSS as an alternative
	used, for adding filters / Adding filters using CSS3
	used, for blending images / Blending images using CSS3

 	CSS3 styling	using, considerations / Considering the impact of the change

 	CSS Animate	reference link / Handling animation requests on a responsive site

 	cssAnimate library / Blending images	about / Introducing cssAnimate
	URL, for downloading / Introducing cssAnimate

 	CSS Media Queries boilerplate	reference link / Handling animation requests on a responsive site

 	CSS specificity	reference link / Considering animation performance on responsive sites

 	CSS version	references / Considering the implications of parallax scrolling

 	cubic-bezier	reference link / Introducing cssAnimate

 	cubic-bezier support	references / Adding Bezier curve support

 	custom animations	designing / Designing custom animations
	reference link / Converting to use with jQuery
	implementing / Implementing some custom animations

 	custom easing	adding, to effects / Adding a custom easing to our effect

 	Custom Easing Function Explorer	URL / Adding a custom easing to our effect

 	custom easing functions	applying, to effects / Applying custom easing functions to effects
	references / Applying custom easing functions to effects

 	custom effects	creating / Creating custom effects
	working / Putting custom effects into action

 	custom events	reference link / Creating and decoupling custom event types
	creating / Creating a custom event

 	custom event types	creating / Creating and decoupling custom event types
	decoupling / Creating and decoupling custom event types

 	custom validators	URL, for documentation / Creating custom validators

 	custom version, of Modernizr	URL / Providing fallback support

 D

 	Deferreds	code, enhancing with / Enhancing your code with jQuery Deferreds and Promises
	working with / Working with Deferreds and Promises
	advantages / Working with Deferreds and Promises
	usage, demonstrating / Examining the use of Promises and Deferreds in the demo

 	delegated events	reference link / Detailing AJAX best practices

 	descendant anchors	about / Reworking our code

 	design patterns	about / Introducing design patterns, Introducing design patterns
	defining / Defining design patterns
	benefits / Defining design patterns
	features / Defining design patterns
	structure, dissecting / Dissecting the structure of a design pattern
	elements / Dissecting the structure of a design pattern
	categorizing / Categorizing patterns
	creational patterns / Categorizing patterns
	structural design patterns / Categorizing patterns
	behavioral patterns / Categorizing patterns
	relating, to jQuery / Exploring the use of patterns within the jQuery library

 	desktop	HTML applications, operating on / Operating HTML applications on a desktop

 	development environment	preparing / Preparing our development environment

 	DeviceTiming	URL / Monitoring the speed of jQuery using Firebug

 	Document Object Model (DOM) / Defining AJAX

 	Don't Repeat Yourself (DRY) principles / Defining design patterns

 	Drupal files	minifying, example / Working through a real example

 	duck punching	about / Introducing monkey patching

 	Dynamic Favicons library	URL / Pausing video or audio

 E

 	e-mails	regex validation function, creating for / Creating a regex validation function for e-mails

 	easeInQuint	references / Considering the impact of the change

 	easeOutQuint	reference link / Converting to use with jQuery

 	easing functions	about / Introducing easing functions
	reference link / Introducing easing functions

 	easing functions, jQuery	reference link / Falling back on jQuery animations

 	effect queue	creating / Creating and managing the effect queue
	managing / Creating and managing the effect queue

 	effects	about / Revisiting effects
	versus animation / Exploring the differences between animation and effects
	custom easing functions, applying to / Applying custom easing functions to effects
	custom easing, adding to / Adding a custom easing to our effect
	Bezier curves, using in / Using Bezier curves in effects
	callbacks, adding to / Adding callbacks to our effects

 	ETags	URL / Improving the speed of loading data with static sites

 	event capturing	reference link / Exploring the implications of using event delegation

 	event delegation	about / Delegating events
	basics / Revisiting the basics of event delegation
	code, reworking / Reworking our code
	reference link / Reworking our code, Using the stopPropagation() method as an alternative
	older browsers, supporting / Supporting older browsers
	demonstration, exploring / Exploring a simple demonstration
	implications, exploring / Exploring the implications of using event delegation
	controlling / Controlling delegation
	controlling, stopPropagation() method used / Using the stopPropagation() method as an alternative

 	event handling	about / Introducing event handling

 	event propagation	about / Revisiting the basics of event delegation

 	Eventralize library	reference link / Namespacing events

 	events	namespace, adding to / Namespacing events

 	Extensible Stylesheet Language Transformations (XSLT) / Defining AJAX

 F

 	Facade Pattern	about / The Facade Pattern
	simple animation, creating / Creating a simple animation
	advantages / Advantages and disadvantages of the Façade Pattern
	drawbacks / Advantages and disadvantages of the Façade Pattern

 	files, Node-WebKit folder	nw.pak / Exploring our demo further
	nw.exe / Exploring our demo further
	package.json / Exploring our demo further
	ffmpegsumo.dll / Exploring our demo further
	filesizeview.nw / Exploring our demo further
	gruntfile.js / Exploring our demo further
	icudtl.dll / Exploring our demo further
	libEGL.dll / Exploring our demo further
	libGLESv2.dll / Exploring our demo further
	content files, dissecting / Dissecting our content files

 	files compression	tips / Exploring some points of note

 	file upload capabilities	adding, AJAX used / Adding file upload capabilities using AJAX

 	filters	exploring / Exploring other filters
	contrast() / Exploring other filters
	hue-rotate() / Exploring other filters
	grayscale() / Exploring other filters
	invert() / Exploring other filters
	Saturate() / Exploring other filters
	reference link / Exploring other filters, Blending images using CSS3
	reference link, for article / Exploring other filters
	applying, with CamanJS / Applying filters with CamanJS
	simple filters, creating manually / Creating simple filters manually
	images, animating with / Animating images with filters

 	filters, adding with CSS3	about / Adding filters using CSS3, Getting ready
	base page, creating / Creating our base page
	brightness level, modifying / Changing the brightness level
	sepia filter, adding to image / Adding a sepia filter to our image

 	Firebug	speed of jQuery, monitoring with / Monitoring the speed of jQuery using Firebug
	URL / Monitoring the speed of jQuery using Firebug

 	FireQuery Reloaded	URL / Monitoring the speed of jQuery using Firebug

 	FireStorage Plus! plugin	URL / Using localStorage to cache AJAX content

 	fixHooks / Creating and decoupling custom event types

 	Font Squirrel	URL / Using the AMD approach to load jQuery
	reference link / Designing custom animations, Animating in a responsive website

 	forms	validating, jQuery used / Using jQuery to validate our forms
	validating, regex statements used / Validating forms using regex statements

 	form validation	need for / Exploring the need for form validation
	common errors / Exploring the need for form validation
	key elements / Exploring the need for form validation

 	Form Validator	URL / Developing a plugin architecture for validation

 G

 	, grunt-node-webkit-builder-for-nw-updater	reference link / Automating the process

 	Gang of Four (GoF) / Introducing design patterns

 	getImageData() method	reference link / Adding a sepia tone

 	getUserMedia.js	reference link / Capturing and manipulating webcam images

 	Gist	URL / Creating a custom event

 	Google PageSpeed	used, for gaining insight / Gaining insight using Google PageSpeed
	URL / Gaining insight using Google PageSpeed

 	Graphics Processing Unit (GPU) / Animating content for mobile devices

 	grunt-bump	reference link / Packaging our plugin using Bower

 	grunt-contrib-jshint package	reference link / Linting jQuery code automatically

 	grunt-contrib-watch	reference link / Automating the process

 	grunt-node-webkit-builder	reference link / Automating the process

 	grunt-topcoat-telemetry	reference link / Gaining insight using Google PageSpeed

 	grunt-yslow	reference link / Automating performance monitoring

 	GUI	using / Using a GUI as an alternative

 	gulp-grunt	reference link / Gaining insight using Google PageSpeed

 H

 	hardware acceleration, and CSS3	reference link, for impact / Choosing CSS or jQuery

 	hoverFlow plugin	reference link / Making the transition even smoother

 	Hoverizr	URL / Getting really creative

 	HTML5	versus jQuery / Using HTML5 over jQuery

 	HTML5 Boilerplate	URL / Rebuilding our plugin using boilerplate

 	HTML5 validation	performing / Starting with simple HTML5 validation

 	HTML applications	operating, on desktop / Operating HTML applications on a desktop

 I

 	IIFEs	URL / Dissecting our monkey patch
	reference link / Building a simple toggle effect

 	image	sepia filter, adding to / Adding a sepia filter to our image
	grayscaling / Grayscaling an image
	exporting / Creating a signature pad and exporting the image

 	images	colors, manipulating in / Manipulating colors in images
	blending, CSS3 used / Blending images using CSS3
	blending / Blending images
	animating, with filters / Animating images with filters

 	ImagesLoaded	URL / Building a parallax scrolling page

 	Immediately Invoked Function Expression (IIFE)	about / Replacing or modifying existing behaviors

 	implications	considering, of parallax scrolling / Considering the implications of parallax scrolling

 	Inno Setup	URL, for downloading / Deploying your application

 	installing	application / Installing and building our first application

 	Inversion of Control (IoC) / Exploring best practices when using QUnit

 	iScroll.js	URL / Considering the implications of parallax scrolling

 	Iterator Pattern	about / The Iterator Pattern
	advantages / Advantages and disadvantages of the Iterator Pattern
	disadvantages / Advantages and disadvantages of the Iterator Pattern

 J

 	Jam	URL / Distributing or applying patches

 	jQuery	downloading / Downloading and installing jQuery
	installing / Downloading and installing jQuery, Using other sources to install jQuery
	URL / Downloading and installing jQuery, Monitoring the speed of jQuery using Firebug
	used, in development capacity / Using jQuery in a development capacity
	Migrate plugin, adding / Adding the jQuery Migrate plugin
	CDN, using / Using a CDN
	installing, Node JS used / Using NodeJS to install jQuery
	installing, Bower used / Installing jQuery using Bower
	loading, AMD used / Using the AMD approach to load jQuery
	loading, best practices / Best practices for loading jQuery
	animation support, updating in / Updating animation support in jQuery
	design patterns, relating to / Exploring the use of patterns within the jQuery library
	versus HTML5 / Using HTML5 over jQuery
	used, for validating forms / Using jQuery to validate our forms
	used, for developing advanced file upload form / Developing an advanced file upload form using jQuery
	selecting / Choosing CSS or jQuery
	reference link / Reworking our code
	reference link, for parsing and execution / Implementing best practices
	uses / Staying with the use of jQuery

 	jQuery's Promises	content, controlling with / Controlling content with jQuery's Promises

 	jQuery-Animate-Enhanced	about / Improving jQuery animations
	URL, for downloading / Improving jQuery animations

 	jquery-lazy	reference link / Implementing best practices

 	jQuery.Animate-Enhanced plugin	reference link / Handling animation requests on a responsive site

 	jQuery.fx.interval	reference link / Improving the appearance of animations

 	jQuery.Keyframes plugin	reference link / Converting to use with jQuery

 	jquery.min.js	reference link / Animating in a responsive website

 	jquery.smoothstate.js	reference link / Animating in a responsive website

 	jQuery Animate Enhanced	URL / Animating rollover buttons

 	jQuery animation queue	controlling / Controlling the jQuery animation queue
	problem, fixing / Fixing the problem
	transition, making smoother / Making the transition even smoother
	pure CSS solution, using / Using a pure CSS solution

 	jQuery animations	improving / Improving jQuery animations
	about / Falling back on jQuery animations

 	jQuery Boilerplate templates	URL / Rebuilding our plugin using boilerplate

 	jQuery code	linting, automatically / Linting jQuery code automatically

 	jQuery Color	URL / Exploring the animate() method as the basis for effects

 	jQuery downloads	customizing, from Git / Customizing the downloads of jQuery from Git
	redundant modules, removing / Removing redundant modules
	GUI, using as alternative / Using a GUI as an alternative

 	jQuery Easing	reference link / Designing custom animations

 	jQuery Learning Site	reference link / Creating a custom event

 	jQuery Migrate plugin	adding / Adding the jQuery Migrate plugin

 	jQuery object	jQuery.migrateWarnings / Adding the jQuery Migrate plugin
	jQuery.migrateMute / Adding the jQuery Migrate plugin
	jQuery.migrateTrace / Adding the jQuery Migrate plugin
	jQuery.migrateReset() / Adding the jQuery Migrate plugin

 	jQuery Patch	reference link / Animating rollover buttons

 	jQuery Timer Tools	reference link / Considering animation performance on responsive sites

 	jQuery UI	URL / Exploring the animate() method as the basis for effects

 	JSDoc	reference link / Automating the provision of documentation

 	JSFiddle	URL / Improving the appearance of animations

 	JSHint	URL / Exploring best practices and principles

 	JSLint	URL / Exploring best practices and principles

 	jsLitmus	URL / Monitoring the speed of jQuery using Firebug

 	JSPerf	URL / Implementing best practices

 	JSPerf.com	URL / Monitoring the speed of jQuery using Firebug

 	JUnit	URL / Creating a simple demo

 K

 	KISS principle	about / Exploring the need for form validation

 L

 	Laplace filter	reference link / Blending images

 	lazy initialization pattern	about / The Lazy Initialization Pattern
	advantages / Advantages and disadvantages of the Lazy Initialization Pattern
	drawbacks / Advantages and disadvantages of the Lazy Initialization Pattern

 	lazy loading plugin	reference link / The Lazy Initialization Pattern

 	Learn jQuery site	reference link / Exploring best practices and principles

 	Lightweight Start	about / Introducing design patterns

 	localStorage	used, for caching AJAX content / Using localStorage to cache AJAX content
	reference link / Using localStorage to cache AJAX content

 	louisremi/jquery-smartresize	reference link / Animating an overlay effect

 M

 	MAMP	URL / Creating an advanced contact form using AJAX, Modifying our advance contact form, Getting ready, Capturing and manipulating webcam images, Building our simple application, Working out unused JavaScript

 	MaxCDN	about / Using a CDN

 	Mini AJAX File Upload Form	reference link / Building our simple application

 	mobile devices	content, animating for / Animating content for mobile devices

 	Modernizr	working with / Working with Modernizr as a fallback
	about / Working with Modernizr as a fallback
	URL / Working with Modernizr as a fallback, Detecting support for the Page Visibility API

 	modules	reference link / Exploring window.js

 	modules, regex examples	reference link / Creating custom validators

 	monkey patch	creating / Creating a basic monkey patch
	dissecting / Dissecting our monkey patch

 	monkey patching	about / Introducing monkey patching
	benefits / Considering the benefits of monkey patching
	pitfalls / Considering the pitfalls of monkey patching

 	Mozilla Developer Network	URL, for article / Capturing and manipulating webcam images

 	Multiclick event plugin	working with / Working with the Multiclick event plugin
	URL / Working with the Multiclick event plugin

 	multiple AJAX requests	handling, callbacks used / Using callbacks to handle multiple AJAX requests

 N

 	namespace	adding, to events / Namespacing events

 	Node	URL / Preparing our development environment, Working out unused JavaScript

 	Node-Webkit	reference link / Operating HTML applications on a desktop

 	Node-WebKit	about / Introducing Node-WebKit
	reference link, for resources / Taking things further

 	Node-WebKit manifest file	reference link / Dissecting the package.json file

 	Node JS	used, for installing jQuery / Using NodeJS to install jQuery

 	NodeJS	URL / Packaging our plugin using Bower, Installing and building our first application, Automating performance monitoring, Minifying code using NodeJS, Working out unused JavaScript, Installing QUnit, Automating tests with QUnit
	used, for minifying code / Minifying code using NodeJS

 	Node Package Manager (NPM)	about / Using NodeJS to install jQuery

 	NPM	URL / Monitoring the speed of jQuery using Firebug

 	nw.js	URL / Introducing Node-WebKit, Preparing our development environment, Installing and building our first application

 O

 	Observer Pattern	about / The Observer Pattern
	advantages / Advantages and disadvantages of the Observer Pattern
	drawbacks / Advantages and disadvantages of the Observer Pattern
	basic example, creating / Creating a basic example

 	open/closed principle	reference link / Advantages and disadvantages of the Strategy Pattern

 	overlay effect	animating / Animating an overlay effect
	reference link / Animating an overlay effect

 P

 	$.proxy function	using / Using the $.proxy function
	reference link / Using the $.proxy function

 	package.json file	dissecting / Dissecting the package.json file
	reference link / Dissecting the package.json file, Automating the process

 	package creation process	automating / Automating the process

 	packages	creating, manually / Creating packages manually

 	packaging content for download, via Bower	reference link / Distributing or applying patches

 	Page Visibility API	about / An introduction to the Page Visibility API
	supporting / Supporting the API
	implementing / Implementing the Page Visibility API
	properties / Breaking down the API
	support, detecting / Detecting support for the Page Visibility API
	using, in practical context / Using the API in a practical context
	video, pausing / Pausing video or audio
	audio, pausing / Pausing video or audio
	support, adding to CMS / Adding support to a CMS
	references, for examples / Exploring ideas for examples

 	PaintbrushJS	URL / Getting really creative

 	parallax.js plugin, PixelCog	reference link / Implementing responsive parallax scrolling

 	parallax scrolling	implications, considering of / Considering the implications of parallax scrolling

 	parallax scrolling page	building / Building a parallax scrolling page
	reference link / Building a parallax scrolling page

 	parallax scrolling responsive	reference link / Building a parallax scrolling page

 	parallax scrolling websites	reference link / Considering the implications of parallax scrolling

 	patches	distributing / Distributing or applying patches
	applying / Distributing or applying patches

 	patterns	creating / Creating or using patterns
	using / Creating or using patterns

 	performance	about / Understanding why performance is critical
	best practice, implementing / Implementing best practices
	strategy, designing / Designing a strategy for performance

 	performance monitoring	automating / Automating performance monitoring

 	Phonestagram application	reference link / Building a simple demo

 	plugin	rebuilding, boilerplate used / Rebuilding our plugin using boilerplate
	extending / Extending our plugin
	packaging, Bower used / Packaging our plugin using Bower
	values, returning from / Returning values from our plugin
	best practices and principles / Exploring best practices and principles

 	plugin architecture for validation, developing	about / Developing a plugin architecture for validation
	basic form, creating / Creating our basic form
	custom validators, creating / Creating custom validators
	content, localizing / Localizing our content
	error messages, centralizing / Centralizing our error messages
	development, wrapping up / Wrapping up development
	usage of best practices, noting / Noting the use of best practices
	fallback support, providing / Providing fallback support

 	plugin design patterns	reference link / Introducing design patterns

 	plugin example, JSFiddle	reference link / Rebuilding our plugin using boilerplate

 	plugin pattern	reference link / Creating or using patterns

 	plugin pattern, key aspects	architecture / Creating or using patterns
	maintainability / Creating or using patterns
	reusability / Creating or using patterns

 	poorly developed plugin	signs, detecting of / Detecting signs of a poorly developed plugin

 	premature optimization / Understanding why performance is critical

 	Promises	code, enhancing with / Enhancing your code with jQuery Deferreds and Promises
	working with / Working with Deferreds and Promises
	advantages / Working with Deferreds and Promises
	usage, demonstrating / Examining the use of Promises and Deferreds in the demo

 	provision of documentation	automating / Automating the provision of documentation

 	Proxy Pattern	about / The Proxy Pattern
	advantages / Advantages and disadvantages of the Proxy Pattern
	disadvantages / Advantages and disadvantages of the Proxy Pattern

 	publish/subscribe model	reference link / The Observer Pattern

 	pure CSS	using / Using pure CSS as an alternative

 	pure CSS solution	using / Using a pure CSS solution

 Q

 	QTransform	URL / Animating rollover buttons

 	QUnit	about / Revisiting QUnit
	installing / Installing QUnit
	URL / Installing QUnit
	simple demo, creating / Creating a simple demo
	URL, for tutorials / Creating a simple demo
	tests, automating with / Automating tests with QUnit
	best practices / Exploring best practices when using QUnit

 R

 	redundant modules	removing / Removing redundant modules

 	regexes	URL, for blog / Creating custom validators

 	regex statements	used, for validating forms / Validating forms using regex statements

 	regex validation function	creating, for e-mails / Creating a regex validation function for e-mails

 	requestAnimationFrame (rAF) / Updating animation support in jQuery	changes, retrofitting to jQuery / Retrofitting the changes to jQuery, Updating existing code
	references / Retrofitting the changes to jQuery
	examples / Some examples of using requestAnimationFrame

 	requestAnimationFrame API	about / Introducing the requestAnimationFrame API, Exploring the concept
	working / Viewing the API in action
	using / Using the requestAnimationFrame API
	scrollable effect, creating / Creating a scrollable effect
	Google Maps marker, animating / Animating the Google Maps marker
	resources, exploring / Exploring sources of inspiration

 	requestAnimationFrame method	exploring / Exploring the requestAnimationFrame API's past
	reference link, for issues with timing / Exploring the requestAnimationFrame API's past
	using / Using the requestAnimationFrame method today
	reference link / Using the requestAnimationFrame method today

 	responsive parallax scrolling	implementing / Implementing responsive parallax scrolling

 	responsive site	animation requests, handling on / Handling animation requests on a responsive site

 	responsive sites	animation performance, considering on / Considering animation performance on responsive sites

 	responsive website	animating in / Animating in a responsive website

 	Reveal.js library	reference link / Capturing and manipulating webcam images

 	rollover buttons	animating / Animating rollover buttons
	code, exploring / Exploring the code in more detail

 S

 	.stop()	reference link, for documentation / Making the transition even smoother

 	scene	setting / Setting the scene

 	Scrollability plugin	URL / Considering the implications of parallax scrolling

 	security page, nw.js	URL, for wiki / Operating HTML applications on a desktop

 	sepia filter	adding, to image / Adding a sepia filter to our image

 	sepia tone	adding / Adding a sepia tone

 	setImmediate / Introducing the requestAnimationFrame API

 	signature pad	creating / Creating a signature pad and exporting the image

 	Signature Pad plugin	reference link / Creating a signature pad and exporting the image

 	signs	detecting, of poorly developed plugin / Detecting signs of a poorly developed plugin

 	simple application	building / Building our simple application
	demo, exploring / Exploring our demo further

 	simple filters	creating, manually / Creating simple filters manually

 	simple validation plugin	building / Building a simple validation plugin

 	Single Page Application (SPA) / Animating in a responsive website

 	Skrollr	reference link / Implementing responsive parallax scrolling
	URL / Building a parallax scrolling page

 	Skrollr library	reference link / Building a parallax scrolling page

 	slide-fade Toggle	content, sliding with / Sliding content with a slide-fade Toggle

 	Sobel filter	reference link / Blending images

 	source maps	support, adding / Adding support for source maps
	URL / Adding support for source maps

 	source map support	adding / Adding source map support

 	speed, of loading data	improving, with static sites / Improving the speed of loading data with static sites

 	SpeedCurve	URL / Monitoring the speed of jQuery using Firebug

 	speed of jQuery	monitoring, with Firebug / Monitoring the speed of jQuery using Firebug

 	SSR principle / Exploring best practices when using QUnit

 	Stack Overflow	URL / Revisiting the basics of event delegation

 	static sites	speed of loading data, improving with / Improving the speed of loading data with static sites

 	Stellar.js	reference link / Implementing responsive parallax scrolling

 	Stellar.js jQuery parallax plugin	URL / Considering the implications of parallax scrolling

 	stopPropagation() method	used, for controlling event delegation / Using the stopPropagation() method as an alternative

 	Strategy Pattern	about / The Strategy Pattern
	simple toggle effect, building / Building a simple toggle effect
	actions, switching between / Switching between actions
	advantages / Advantages and disadvantages of the Strategy Pattern
	disadvantages / Advantages and disadvantages of the Strategy Pattern

 	structural design patterns	about / Categorizing patterns

 	sublime-grunt	reference link / Minifying code using NodeJS

 	Sublime Text	URL, for downloading / Preparing our development environment

 	Sublime Text 2	reference link / Debugging your application

 	support, Page Visibility API	detecting / Detecting support for the Page Visibility API
	fallback support, providing / Providing fallback support
	visibility.js, installing / Installing visibility.js
	demo, building / Building the demo

 	Syntactically Awesome Stylesheets (SASS) / Handling animation requests on a responsive site

 T

 	Team Treehouse	reference link / Using the requestAnimationFrame API

 	Test Mail Server tool	references / Creating an advanced contact form using AJAX
	URL / Modifying our advance contact form

 	tests	automating, with QUnit / Automating tests with QUnit

 	Thumbelina plugin	URL / Creating a scrollable effect

 	toDataURL() method	reference link / Creating a signature pad and exporting the image

 	Toggles plugin	reference link / Creating a clickToggle handler

 	transform	reference link / Exploring the code in more detail

 	transitionend, Treehouse website	reference link / Improving jQuery animations

 U

 	UglifyJS	URL / Minifying code using NodeJS

 	unit testing	URL / Exploring best practices when using QUnit

 	unused JavaScript	working out / Working out unused JavaScript

 	URL validation	performing / Taking it further for URL validation

 V

 	values	returning, from plugin / Returning values from our plugin

 	Velocity.js	about / Improving jQuery animations
	URL, for downloading / Improving jQuery animations
	reference link / Considering animation performance on responsive sites

 	ViewPortSize	URL / Building a parallax scrolling page

 	VintageJS	URL / Getting really creative

 	visibility.js	reference link / Providing fallback support, Installing visibility.js
	installing / Installing visibility.js

 W

 	WAMP	URL / Creating an advanced contact form using AJAX, Modifying our advance contact form, Capturing and manipulating webcam images, Building our simple application, Working out unused JavaScript

 	WAMPServer	URL / Getting ready

 	Web Animations API	references / Choosing CSS or jQuery

 	webcam images	capturing / Capturing and manipulating webcam images
	manipulating / Capturing and manipulating webcam images

 	Web Graphics Library (WebGL) / Exploring our demo further

 	WebP	about / Adding WebP support to jQuery

 	WebP support, adding to jQuery	about / Adding WebP support to jQuery, Getting started
	patch, adding / Creating our patch
	working / Taking things further

 	window.js	exploring / Exploring window.js
	reference link / Exploring window.js

 	WOW Slider	URL / The Lazy Initialization Pattern

 X

 	XAMPP	URL / Creating an advanced contact form using AJAX, Modifying our advance contact form, Getting ready, Building our simple application

 Y

 	Yeoman Node WebKit Generator	URL / Automating the creation of our project

 	YSlow	references / Automating performance monitoring

 Z

 	7-Zip	URL / Preparing our development environment

 Using localStorage to cache AJAX content

Working with AJAX requires careful consideration – it is important to strike a balance in fetching the right amount of content, at the appropriate points, without making too many unnecessary requests to the server.
We've seen a number of tricks we can use to help reduce the impact of AJAX requests. One of the more adventurous ways is to store content in the localStorage area of each browser – we can do this using an AJAX prefilter. The developer Paul Irish has wrapped up the code needed to do this in a plugin, which is available at https://github.com/paulirish/jquery-ajax-localstorage-cache.
We're going to use it to alter our basicajax demo from earlier. Let's take a look at how we are going to do this:
	Let's start by extracting a copy of the basicajax demo folder from the code download that accompanies this book, and saving it to our project area.
	Next, we need to download the plugin – this is available at https://github.com/paulirish/jquery-ajax-localstorage-cache/archive/master.zip. From the zip file, extract jquery-ajax-localstorage-cache.js, and save it to the js subfolder within basicajax.
	We need to make some changes to our JavaScript and HTML markup. Let's first change the JavaScript. In basicajax.js, add the following two lines as shown:
 localCache: true,
 error: function() {
 cacheTTL: 1,

	In basicajax.html, we need to reference the new plugin, so go ahead and alter the script calls, as shown next: <script src="js/basicajax.js"></script>
 <script src="js/jquery-ajax-localstorage-cache.js"></script>
</head>

	If we rerun the demo and click on the button to load the content, we should not see anything different visually; the change will be apparent if we fire up Firebug, switch to the Net tab, and then click on JavaScript:[image: Using localStorage to cache AJAX content]

	If we explore further, we can now see signs of our AJAX content being stored within the localStorage area of our browser:[image: Using localStorage to cache AJAX content]
Tip
If you would like to see all of the localStorage settings, then try downloading and installing the FireStorage Plus! plugin from https://addons.mozilla.org/en-US/firefox/addon/firestorage-plus/.

All of the content that we cache in this area can now be manipulated using jQuery and the localStorage.getItem or localStorage.clearItem methods. If you would like to learn more, then you may refer to my book HTML5 Local Storage How-to, which is available from Packt Publishing.
Note
There is a working version of this code available in the code download that accompanies this book, within the basicajax-localstorage folder.

There may be instances where you find you want to reduce the cache TTL value to minutes (or maybe even seconds?). You can do this by modifying lines 70 to 72 in jquery-ajax-localstorage-cache.js, and remove one of the multipliers, to leave the following:
if (! ttl || ttl === 'expired') {
 localStorage.setItem(cacheKey + 'cachettl', +new Date() + 1000 * 60 * hourstl);
}

Let's change track . We mentioned earlier that one of the ways we can improve performance when working with AJAX is to ensure that we keep the number of requests to a minimum. If our code contains multiple requests, it will have an adverse impact on performance, particularly if we have to wait for each request to be completed before the next is started.
We could potentially use localStorage to reduce the impact, by requesting content from within the browser, instead of the server; it will work, but may not suit every type of request. Instead, as we'll see later, there are better alternatives that allow multiple requests to be handled with ease. Let's delve into this issue in more detail, beginning with the impacts of using callbacks to manage the multiple requests.

Introducing the requestAnimationFrame API

The shift to working online over the last few years has led to a massive increase in demand for performant browsers, while at the same time reducing resource consumption and battery power.
With this in mind, browser vendors and Microsoft teamed together to create three new APIs. We've already explored one, in the form of the Page Visibility API; the other that we're going to look at is requestAnimationFrame. All three (the third being setImmediate) were designed for better performance and increased power efficiency.
Exploring the concept

So, what is requestAnimationFrame? Simple – if you've spent any time creating animation using jQuery, you will no doubt have used the setInterval method (or even clearInterval), right? requestAnimationFrame (and clearAnimationFrame) were designed as drop-in replacements for each respectively.
Why should we use it? We will explore the benefits of using requestAnimationFrame in the next section, but first let's understand its essence.
Most animations work to a JavaScript based timer of less than 16.7ms when drawing animations, even though monitors can only display at 16.7ms (or 60Hz frequency), as indicated by the following graph:
[image: Exploring the concept]
Why is this important? The key to this is that a typical setInterval or setTimeout frequency is usually around 10ms. This means that every third draw of the monitor is not seen by the viewer, as another draw will happen before the display refreshes. Refer to the next graph:
[image: Exploring the concept]
This results in a choppy display, as frames will be dropped. Battery life can be impacted by as much as 25 percent, which is a significant loss!
Browser vendors recognized this, so came up with the requestAnimationFrame API. This tells the application when the browser needs to update the screen, and when the browser needs a refresh. This results in a reduction in use of resources, and fewer dropped frames, as the frame rate is more consistent compared to code.
Note
The developer Paul Irish sums it up perfectly with the following comment on his blog at http://www.paulirish.com/2011/requestanimationframe-for-smart-animating/, when he notes that this allows browsers to "optimize concurrent animations together into a single reflow and repaint cycle, leading to higher fidelity animation."

Viewing the API in action

As is nearly always the case, it is better seeing something in action, rather than reading about it. It's something about a moving demo that helps ram the concept home, at least for me!
To help with this, there are two demos available on the code download that accompanies this book – the requestAnimAtionframe.html and cancelAnimationFrame.html files. They contain simple examples of both APIs. We will explore more practical uses of the APIs towards the end of this chapter.

Using the requestAnimationFrame API

Although it may not be immediately apparent from the simple demos that we referenced at the end of the previous section, there are some clear benefits to using requestAnimationFrame, which are listed next and are worth noting:
	requestAnimationFrame works with the browser to combine animations together into a single repaint during a redraw transition, using the screen refresh rate to dictate when these should happen.
	Animations are paused if a browser tab is inactive or hidden, which reduces requests to refresh the screen, resulting in lower memory consumption and battery use on mobile devices.
	Animations are optimized by the browser, and not in code – the lower frame refresh rate results in a smoother, more consistent appearance, as fewer frames will be dropped.
	The API is even supported on most mobile devices too. The only platform that doesn't support it at present is Opera Mini version 8.0. The CanIUse site (http://www.caniuse.com) shows global usage of this as being very low at 3 percent, so this is unlikely to present too much of an issue.

It's worth noting that cancelAnimationFrame (as a sister API to requestAnimationFrame) can be used to pause animations. We can potentially use this with something like the Battery API to stop animations (or media such as videos) from kicking in, if battery power is too low.
Tip
To see the difference between requestAnimationFrame against setTimeout, then take a look at http://jsfiddle.net/calpo/H7EEE/. You can clearly see the difference between the two, despite the simple nature of the demo!

A key point to note though, is that there are instances where requestAnimationFrame doesn't always produce an improvement over using jQuery. There is a useful article by David Bushell at http://dbushell.com/2013/01/15/re-jquery-animation-vs-css/, which outlines this issue, and notes that requestAnimationFrame is best suited to being used in <canvas> based animations.
Creating animations based around requestAnimationFrame (and cancelAnimationFrame) is very straightforward. The developer Matt West has created a JavaScript/jQuery example on CodePen, which is available at http://codepen.io/matt-west/full/bGdEC. He has written a tutorial that accompanies this demo, and which is available on Team Treehouse's blog at http://blog.teamtreehouse.com/efficient-animations-with-requestanimationframe.
This brings us nicely onto our next subject. Now that we've seen how to manipulate the API using JavaScript, let's take a look at using similar techniques with jQuery.

Retrofitting the changes to jQuery

So far, we've covered the basics of using requestAnimationFrame, along with its sister API, cancelAnimationFrame; we've seen how to implement it using either plain JavaScript.
It's worth noting at this point though that jQuery does not have native support included. An attempt was made to add it to jQuery prior to version 1.8, but was removed due to issues with support by the major browser vendors.
Thankfully, vendor support is now much better than previously; and there are plans to add requestAnimationFrame support into jQuery 2.2 or 1.12. You can see the changes that need to be made as follows, along with the history:
	The commit: https://gitcandy.com/Repository/Commit/jQuery/72119e0023dcc0d9807caf6d988598b74abdc937
	The changes to effect.js which can be referred from https://github.com/jquery/jquery/blob/master/src/effects.js
	Some of the history behind including requestAnimationFrame in jQuery core: https://github.com/jquery/jquery/pull/1578; http://bugs.jquery.com/ticket/15147

As a temporary measure (if you still need to support an earlier version of jQuery), you can try using Corey Frang's drop-in shim at https://github.com/gnarf/jquery-requestAnimationFrame, which adds support to versions of jQuery post 1.8.
If however you are feeling more adventurous, then it is easy enough to retrofit requestAnimationFrame support directly to a library that uses it. Let's take a moment to see what is involved in making the conversion.
Updating existing code

Making the change is relatively straightforward. The key to it is making the changes modular so that they can be swapped back out easily, once jQuery gains support for requestAnimationFrame.
The changes can be made if the library you are using has code references to either setInterval or clearInterval. For example, consider if we had the following code extract:
var interval = setInterval(doSomething, 10)
var progress = 0
function doSomething() {
 if (progress != 100){
 // do something here
 }
 else {
 clearInterval(interval)
 }
}

It would be updated to the following code extract, replacing the reference to setInterval with requestAnimationFrame (and adding the equivalent replacement for clearInterval):

var requestAnimationFrame = window.requestAnimationFrame;
var cancelAnimationFrame = window.cancelAnimationFrame;

// your code here

var progress = 0;

function doSomething() {
 if (progress != 100) {
 // do something here
 var myAnimation = requestAnimationFrame(doSomething);
 } else {
 cancelAnimationFrame(myAnimation);
 }
}

In the previous code example, the code highlighted in bold indicates the type of changes needed to update the code. We will use this technique later on in this chapter, to retrofit support to an existing library. It will be one of two demos that we will explore, which use requestAnimationFrame.

Summary

If you thought that the only methods to include jQuery were via a manual download or using a CDN link, then hopefully this chapter has opened your eyes to some alternatives—let's take a moment to recap what we have learned.
We kicked off with a customary look at how most developers are likely to include jQuery before quickly moving on to look at other sources.
We started with a look at how to use Node, before turning our attention to using the Bower package manager. Next, we had a look at how we can reference individual modules within jQuery using the AMD approach. We then moved on and turned our attention to creating custom builds of the library using Git. We then covered how we can use source maps to debug our code, with a look at enabling support for them within Google's Chrome browser.
To round out our journey of loading jQuery, we saw what might happen if we can't load jQuery at all and how we can get around this, by using Modernizr to allow our pages to degrade gracefully. We then finished the chapter with some of the best practices that we can follow when referencing jQuery.
In the next chapter, we'll kick things into a gear by taking a look at how we can customize jQuery. This can be done by replacing or modifying a function or applying a patch during runtime; are you ready to get stuck in?

Dissecting the structure of a design pattern

If you take a look at any design pattern in detail, you will find that it is made up of a rule that establishes a relationship between the following:
	A context
	A system of forces that arises in that context
	A configuration that allows these forces to resolve themselves in the context

These three key aspects can be further broken down into a number of different elements, in addition to a pattern name and description:
	
Element

	
Purpose or function

	
Context outline

	
The context in which the pattern is effective in responding to the users' needs.

	
Problem statement

	
A statement of the problem being addressed, so we can understand the intent of the pattern.

	
Solution

	
A description of how the user's problem is being solved in a list of steps and perceptions that are easy to understand.

	
Design

	
A description of the pattern's design and, in particular, the user's behavior when interacting with it.

	
Implementation

	
A guide to how the pattern will be implemented.

	
Illustrations

	
A visual representation of the classes in the pattern, such as a UML diagram.

	
Examples

	
An implementation of the pattern in a minimal form.

	
Corequisites

	
What other patterns may be needed to support the use of the pattern being described?

	
Relations

	
Does this pattern resemble (or mimic) any existing ones?

	
Known usage

	
Is the pattern already being used in the wild? If so, where and how?

	
Discussions

	
The team or the author's thoughts on the benefits of using the pattern.

The beauty about using patterns is that while they may entail a degree of effort during the planning and documentation stages, they are useful tools that help to get all the developers in a team on the same page.
It is worth taking a look at the existing patterns first, before creating new ones—there may be one in use already, which reduces the need to design from scratch and go through a lengthy process of testing before being accepted by other developers.

Finishing up

Before we round up this chapter, it's worth pausing for a moment to consider the implications of some of the techniques that we've covered in this chapter.
The purists may question the need to use jQuery to apply filters, particularly if all we need to do is to use a method such as .addClass() or even .toggleClass() to apply or remove a specific filter. The flip side of this is that this book is of course about jQuery, and that this is what we should concentrate on using, even at the cost of the apparent delay in showing some of the filter effects we've used.
The short answer to this will depend on you – anyone can write jQuery code to a greater or lesser extent, but the difference between an average and a good developer is not just in writing code.
The real difference lies partially in making the right choices. jQuery is frequently seen as the easy option, particularly as it provides the widest range of support. We can create any kind of filter to fit our needs, but it is always at the expense of processing power – we cannot get away from the fact that manipulating the canvas element takes a lot of resources, so is slow to complete. This is no better if high definition images are used (as we noted back in the Applying filters with CamanJS section) – indeed, it's even slower, given that more pixels need to be processed!
The upshot of this is that we need to carefully consider what filters we need to apply, and whether we can simply use CSS3 filters to fulfill our needs. It is true that these may not provide a solution for all our needs, but support is changing. We should really consider using jQuery filters where the delay isn't an issue, and the application won't be used on a mobile platform (due to the resources required to process each pixel!).

Blending images using CSS3

There may be instances where we prefer not to manipulate the image directly, but alter a background image instead. Similar effects are easy to achieve in static images within PhotoShop, but are less common on the Internet.
Thankfully, we can achieve the same effect using the background-blend mode within CSS – this has the effect of allowing us to merge two images together. Using background-blend mode (for which browser support is good within desktop browsers) removes the need to manually edit each photo, so if any are changed, the same effect can easily be applied to their replacements.
In the same vein as those filters we've already examined, we would apply the filters within CSS. We can then switch them on or off using jQuery at will. I won't revisit the jQuery code that would be required, as we've already seen it earlier in the chapter; suffice to say that we would apply the background-blend mode, using an example such as the following:
 <style>
 .blend { width: 389px; height: 259px; background:#de6e3d url("img/flowers.jpg") no-repeat center center; }
 .blend.overlay { background-blend-mode: overlay; }
 </style>
</head>

In this instance, we've used the overlay filter. This complex filter multiplies the colors, depending on the backdrop color value. It has the net effect of making lighter colors go lighter, and darker colors go darker, as shown in the next screenshot:
[image: Blending images using CSS3]
Tip
There are two examples of this blend mode in the code download that accompanies this book – look for the overlay.html and multiply.html files.

There are a good number of filter options available, such as multiply, lighten, dodge, and color burn – these are intended to produce similar effects to those used in PhotoShop, but without the need for expensive applications. All the filters follow a similar format. It is worth searching Google for examples of how filters appear, such as those shown at http://www.webdesignerdepot.com/2014/07/15-css-blend-modes-that-will-supercharge-your-images/.
Note
If you would like to learn more, then head over to Mozilla's Developer site at https://developer.mozilla.org/en-US/docs/Web/CSS/back ground-blend-mode. For a really useful example of this filter (and a source of inspiration for combining it with jQuery), check out the 2016 American Presidential Candidates demo at http://codepen.io/bennettfeely/pen/rxoAc.

Okay, time to get really stuck into some jQuery, methinks! Let's switch to using plugins, and see some of the effects we can achieve with what is available for use. We'll start with a look at using CamanJS as our example, following it with a more in-depth exploration of creating filters manually, and see why it's not always the best way to achieve the desired effect!

Summary

Wow, we've covered a lot over the last few pages. It has certainly been intense! Let's take a breather, and recap what we've learnt.
We kicked off with a revisit on basic effects, as a reminder of what we can use in jQuery, before exploring the key differences between standard animations and effects. We then moved onto creating custom effects, with a look at the basis for all effects, before creating two examples of custom effects in code.
We then turned our focus to adding custom easings, and explored how those we saw earlier in the book can equally be applied to jQuery effects. We worked our way through an example in the form of adding Bezier curve-based easing support, before exploring how we can achieve similar effects using just CSS. We then briefly covered adding callbacks to our effects, and then explored how we can better control the callbacks by using jQuery's Deferreds / Promises options as an alternative to standard callbacks.
We then rounded up the chapter with a look at managing the effects queue. This was a good opportunity to explore the benefits of careful queue management, so that we can avoid any confusion or unexpected results when using effects within jQuery.
Moving swiftly on, it's time for some real fun! Over the next couple of chapters, we're going to explore two topics that you might not immediately associate with jQuery; we'll start with exploring the Page Visibility API, where you'll see that writing lots of complex code isn't necessarily a good thing.

Implementing responsive parallax scrolling

What is parallax scrolling all about? Put simply, it involves moving the background at a slower rate than the foreground to create a 3D effect while you scroll down the page.
Originally created by Ian Coyle for Nike back in 2011, parallax scrolling is a popular technique to use. It can provide a subtle element of depth but can be equally overwhelming if you don't use it properly!
To get a flavor of what is possible, take a look at the article on the Creative Bloq website, at http://www.creativebloq.com/web-design/parallax-scrolling-1131762.
There are dozens of parallax scrolling plugins available, such as the parallax.js plugin from PixelCog (at http://pixelcog.github.io/parallax.js/) or Stellar.js by Mark Dalgleish, available at http://markdalgleish.com/projects/stellar.js/. Arguably, the most well-known plugin is Skrollr, which can be downloaded from https://github.com/Prinzhorn/skrollr—this will form the basis of our next demo.
Building a parallax scrolling page

If you spend any time to research on the Internet, you will no doubt come across lots of tutorials that cover adding a parallax scrolling effect to a site. Over the next few pages, we'll use a tutorial by the Australian frontend developer, Petr Tichy, as a basis for our next exercise. After all, there is no sense in trying to reinvent the wheel, right?
Note
The original tutorial can be viewed at https://ihatetomatoes.net/how-to-create-a-parallax-scrolling-website/.

Our next demo will use the well-known Skrollr library (available at https://github.com/Prinzhorn/skrollr) to construct a simple page that scrolls through five images, but we'll also use a number of effects to control how the images scroll down the page:
[image: Building a parallax scrolling page]
Now that we've seen what our demo will produce, let's get stuck in by performing the following steps:
	We'll begin by extracting the parallax folder from a copy of the code download that accompanies this book; save the entire folder to your project area.
	We need a couple of additional plugins for our demo to work, so go ahead and download the following:	ImagesLoaded: https://raw.githubusercontent.com/desandro/imagesloaded/master/imagesloaded.pkgd.js; save the file as imagesloaded.js
	Skrollr: https://raw.githubusercontent.com/Prinzhorn/skrollr/master/src/skrollr.js
	ViewPortSize: https://github.com/tysonmatanich/viewportSize

Save all of these plugins in the js subfolder within the parallax folder.

	In a new file, add the following code; this handles the initialization of the Skrollr plugin. Let's go through it in detail, beginning with a ready DOM statement that sets up a number of variables and then preloads the images using the ImagesLoaded plugin before resizing them and fading in each section:$(document).ready(function($) {
 // Setup variables
 $window = $(window);
 $slide = $('.homeSlide');
 $slideTall = $('.homeSlideTall');
 $slideTall2 = $('.homeSlideTall2');
 $body = $('body');

 //FadeIn all sections
 $body.imagesLoaded(function() {
 setTimeout(function() {
 // Resize sections
 adjustWindow();

 // Fade in sections
 $body.removeClass('loading').addClass('loaded');
 }, 800);
});

	Immediately below the DOM function and before the closing brackets, add the following code. This handles the resizing of each of the slides to the appropriate window height or to a minimum height of 550px, whichever is greater:function adjustWindow(){
 var s = skrollr.init(); // Init Skrollr
 winH = $window.height(); // Get window size

 // Keep minimum height 550
 if(winH <= 550) { winH = 550; }

 // Resize our slides
 $slide.height(winH);
 $slideTall.height(winH*2);
 $slideTall2.height(winH*3);

 // Refresh Skrollr after resizing our sections
 s.refresh($('.homeSlide'));
}

	If all is well, when you preview the results, images will cross from one to another when we scroll up or down, as shown in this screenshot:[image: Building a parallax scrolling page]

Parallax scrolling as a technique can produce some really stunning effects when used well. For some great examples, take a look at Costa Coffee's site, at http://www.costa.co.uk, or Sony's Be Moved site, at http://www.sony.com/be-moved/. It's hard to believe that such original designs are based on parallax scrolling!
Tip
Take a look at one of Petr's tutorials on how to make parallax scrolling responsive, at https://ihatetomatoes.net/make-parallax-website-responsive/.

Considering the implications of parallax scrolling

Although it may be hard to believe that such beautiful sites can be created using parallax scrolling, this must be tempered with a warning: this technique does not come without its issues. Granted, most (if not all) can be overcome with some care and attention; nevertheless, these issues can trip up any designer if care is not taken over the design and implementation. Let's explore some of these issues in more detail:
	The biggest killer is that parallax scrolling is not SEO-friendly by default. There are techniques available to get around this, such as jQuery or multiple pages, but they will impact analytics or server resources. The digital marketing strategist Carla Dawson has written an excellent article that discusses the merits of these workarounds, which is available at http://moz.com/blog/parallax-scrolling-websites-and-seo-a-collection-of-solutions-and-examples—it is worth a read!
	Parallax scrolling will (naturally) require visitors to scroll; the key here is to ensure that we are not creating single pages that scroll for too long. This might have an impact on performance for mobile users and put visitors off.
	The use of jQuery to create effects based on this technique can itself be a drawback; jQuery will have an impact on page loading times, as the position of each element on the page has to be calculated. We can mitigate against this to a degree, by customizing our copy of jQuery using the techniques we covered back in Chapter 1, Installing jQuery, but there will always be an element of reduced performance when using the library.
	Parallax scrolling can reveal a number of usability issues. The layout can appear haphazard to end users, if the balance of visual appeal against content and ease of access is not even. Parallax scrolling will be suitable instances where you might expect visitors to browse your site once, or for a company to show case what they can do—it can be harmful for those situations where you are pitching for a product or business.
	In a number of cases, you will find that parallax scrolling doesn't work on mobile devices; this is largely due to how animations are executed at the end, which breaks parallax scrolling. Attempts have been made to work around this, with varying levels of success. The following are a couple of examples of successful attempts:	Using the Stellar.js jQuery parallax plugin, which is available at http://markdalgleish.com/projects/stellar.js/; this in tandem with the Scrollability plugin, from http://joehewitt.github.com/scrollability/, can be used to produce a touch-friendly parallax scrolling effect. The plugin works both in desktop and mobile browsers, so consideration should be given to checking for touch support and switching methods, as appropriate. The plugin author Mark Dalgleish explains how to achieve this using iScroll.js at http://markdalgleish.com/presentations/embracingtouch/.
	A pure CSS version by Keith Clark is available at http://codepen.io/keithclark/pen/JycFw—he explains the principles used in detail on his site, at http://keithclark.co.uk/articles/pure-css-parallax-websites/.

The key message for parallax scrolling is to not rush in; it's true that there are some sites that have managed to create some stunning examples of parallax scrolling, but a lot of thought and planning will have gone into building the example so that it is performant, caters to SEOs, and still presents a usable experience to the visitor.

Validating forms using regex statements

So far, you've seen some of the commands that you can use to validate forms using jQuery, and how you can limit your checks to specific field types (such as e-mail addresses) or override the error message displayed on the screen.
The code will fail though, without some form of validation template that we can use to check—the keen-eyed amongst you may have noticed this, in our basicvalidation.html demo:
pattern = "[^ @]*@[^ @]*\.[a-zA-Z]{2,}";

The pattern variable is used to define a regular expression or a regex statement. Put simply, these are single-line statements that dictate how we should validate any entries in our form. These are not unique to query though; they can be equally used with any scripting language, such as PHP or plain JavaScript. Let's take a moment to look at a few examples in order to see how this one works:
	[^ @]*: This statement matches any number of characters that are not an @ sign or a space
	@: This is a literal
	\.: This is a literal
	[a-zA-Z]: This statement indicates any letter, either uppercase or lowercase
	[a-zA-Z]{2,}: This statement indicates any combination of two or more letters

If we put this together, the pattern regex translates to an e-mail with any set of characters, save for an @ sign, followed by an @ sign that is then followed by any set of characters except an @ sign, a period, and finally at least two letters.
Okay, enough of theory; let's get coding! We're going to work through a couple of examples, starting with a modification to the e-mail validation and then develop the code to cover validation for website addresses.
Creating a regex validation function for e-mails

We've already used a regex to validate our email address field; while this works well, the code can be improved. I'm not a keen fan of including the validation check within the event handler; I prefer to hive it off into a separate function.
Thankfully, this is easy to correct; let's sort that out now by performing the following steps:
	We'll start by opening up the basicvalidation.js file and adding a helper function immediately before the emailField.on() event handler:function checkEmail(email) {
 pattern = new RegExp("[^ @]*@[^ @]*\.[a-zA-Z]{2,}");
 return pattern.test(email);
}

	This function handles the validation of e-mail addresses; in order to use it, we need to modify the emailField.on() handler, as follows:emailField.on("invalid", function(e) {
 e.target.setCustomValidity("");
 email = emailField.val();
 checkEmail(emailField);
 if (!e.target.validity.patternMismatch) {
 e.target.setCustomValidity("I need to see an email address
 here, not what you've typed!");
}

If we save our work and then preview it in a browser, we should see no difference in the validation process; we can be rest assured that the validation check process has now been separated into an independent function.

Taking it further for URL validation

Using the same principles as those used in the previous example, we can develop a similar validation check for the urlField field. It's a simple matter of duplicating the two emailField.on() event handlers and the checkEmail function to produce something similar to what is shown in the following screenshot:
[image: Taking it further for URL validation]
Using the code we've already produced, see whether you can create something that validates the website URL entry using this regex:
/^(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})([\/\w \.-]*)*\/?$/

If your code works, it should produce an error message similar to the one shown in this screenshot:
[image: Taking it further for URL validation]
Hopefully, you've managed to use the code we've produced so far—if you're stuck, there is a working example in the code download that accompanies this book.
So, assuming that we have something that works, has anyone spotted problems with our code? There are definitely some issues that we need to fix; let's go through them now:
	Notice that the feedback isn't 100 percent dynamic? In order to make our code recognize a change from an error to a successful entry, we need to refresh our browser window—this is not ideal at all!
	We're duplicating a lot of code within our jQuery file—architecturally, this is bad practice and we can definitely improve on what has been written.

Instead of duplicating the code, let's completely rework our jQuery into a quick plugin; architecturally, this will get rid of some of the unnecessary duplication and make it easier for us to extend the functionality with minimal changes. It won't be perfect—this is something we will correct later in the chapter—but it will produce a more efficient result than our present code.

Who this book is for

The book is for frontend developers who want to do more than just write code, but who want to explore the tips and tricks that can be used to expand their skills within jQuery development. To get the most out of this book, you should have a good knowledge of HTML, CSS, and JavaScript and ideally be at an intermediate level with jQuery.

Chapter 13. Enhancing Performance in jQuery

In the book so far, we've covered an array of different topics: from customizing jQuery to the use of animation, and even a little on the use of jQuery within Node-WebKit.
However, there is one key topic we have not yet covered. While working with jQuery can be very fulfilling, we must be mindful of optimizing our code where practical, to ensure a positive user experience. Many developers might simply eyeball the code, but this is time-consuming. In this chapter, we will look at ways of optimizing your jQuery code, introduce the use of tools that can supplement existing workflow, and help give real feedback on your changes. We will cover a number of topics in this chapter, which will include:
	Understanding why performance is important
	Monitoring performance when adding elements
	Monitoring the speed of jQuery
	Automating performance monitoring
	Using Node to lint our code automatically
	Implementing best practices for enhancing performance
	Considering the case of using jQuery

Ready to get started?
Note
Throughout this chapter we will concentrate on using jQuery – you will find that many of the tips given can also be applied to pure JavaScript using it more in your code (as we will discuss later in the chapter).

Understanding why performance is critical

Picture the scene if you will – your team has created a killer web-based application using the latest techniques, which does everything under the sun, and you're ready to sit back and enjoy the laurels of your success. Except for one small but rather critical thing…
No one is buying. Not one copy of your application is being sold – the reason why? Simple – it's really slow and hasn't been properly optimized. No amount of selling will get over the fact that in this age of mobile devices, a slow application will turn off the users.
Should we be concerned with the performance of our application? Absolutely! There are good reasons for being critical of our application's performance; let's take a look at a few:
	The advent of mobile devices with the associated costs of surfing means that our content must be optimized to ensure the site displays quickly, before the connection times out
	It's all too easy to focus on development instead of fixing cross-browser issues – each quirk in itself may not be much, but the cumulative effect will soon add up
	Once you start writing considered code, then it will soon become second nature

Of course, it has to be said that there is a risk of premature optimization, where we spend lots of time optimizing code for little gain, and may even cause ourselves problems later if we remove code that is subsequently needed!
Okay – so assuming there is scope to optimize our code, what should we do? Well, there are a few tricks we can use; while we may have the desire to optimize our code ad nausea, it is not always worth the effort. The smarter approach is to always consider the bigger picture, to make sure that the benefits of optimizing scripts are not lost through badly written style sheets or large pictures, for example!
Let's take a moment to consider some of the options available to us – they include:
	Building custom versions of jQuery
	Minifying our scripts
	Fine-tuning the use of selectors
	Being prudent with event bubbling
	Continuous use of appropriate tools to lint our code
	Minimizing manipulation of the DOM

These are some of the options available to us. Our first stop though is to benchmark our code, to see how it performs prior to making any changes. The first step in this is to run a performance check on our scripts. Let's take a moment to see what is involved, and how this works in action.

Applying filters with CamanJS

So far, we've applied filters using CSS3. This is perfect for lightweight solutions, but there may be occasions where we need to do more, and CSS3 won't suffice.
Enter jQuery! Over the next few pages, we'll take a brief look at applying filters using CamanJS as our example jQuery plugin. We'll then move on and see how easy (or complex) it is to create the same effects manually, without needing to rely on a third-party plugin.
Introducing CamanJS as a plugin

CamanJS is one of the several plugins available for jQuery, which allows us to apply any number of filters; we can choose from either the preset ones that come with the library, or create our own combinations.
The plugin is available from http://camanjs.com/, and can be downloaded from GitHub at https://github.com/meltingice/CamanJS. Else, we can use NodeJS or Bower to install the library. The plugin is also available via CDN at http://www.cdnjs.com – search for CamanJS to get the latest URL to use in your project.
It is worth noting that filters can be applied using one of two methods – the first is as a HTML data- attribute:

The second method is using jQuery, as we will see in the next demo; we'll be using this method throughout our examples. With this in mind, let's get cracking, and take a look at using CamanJS to apply filters, as shown in our next demo.

Building a simple demo

In this demo, we'll be using the CamanJS library to apply any one of the three filters to our flowers image that we've been using throughout this chapter.
Note
Remember – if you use Chrome, run this demo from within a local webserver, as suggested in the Getting ready section.

Let's begin:
	Start by extracting the following files from the code download that accompanies this book. For this demo, we'll need the following files: caman.html, flowers.jpg, usecaman.js, jquery.min.js, and usecaman.css. Store the JavaScript files in the js subfolder, the CSS file in the css subfolder, the image within the img subfolder, and the HTML markup within the root area of our project folder.
	Run the caman.html demo file. If all is well, we should see the following image appear:[image: Building a simple demo]

	Let's explore the jQuery required to operate the demo. If we peek inside usecaman.js, we'll see the following code. This is used to get a handle on the <canvas> element in our markup, before drawing the flowers.jpg image on it. var canvas = $('#canvas');
 var ctx = canvas[0].getContext("2d");
 var img = new Image();
 img.src = "img/flowers.jpg";
 ctx.drawImage(img, 0, 0);

	Digging a little deeper, we should see the following method – this handles the reset of the <canvas> element back to its original state; notice how the drawImage() method is used, which is key to manipulating images with different filters: $reset.on('click', function(e){
 e.preventDefault();
 var img = new Image();
 img.src = "img/flowers.jpg";
 ctx.save();
 ctx.setTransform(1, 0, 0, 1, 0, 0);
 ctx.clearRect(0, 0, canvas[0].width, canvas[0].height);
 ctx.restore();
 ctx.drawImage(img, 0, 0);
 Caman('#maincanvas', 'img/flowers.jpg', function(){
 this.revert(false).render();
 });
 });

	We then top it off with three different event handlers – these apply the relevant CamanJS filter:$noise.on('click', function(e) {
 e.preventDefault();
 Caman('#maincanvas', 'img/flowers.jpg', function() {
 this.noise(10).render();
 });
});

Our simple demo only scratches the surface of what is possible with CamanJS. It is well worth having a look at the site in more detail, to get a feel for what can be achieved using the library. As a source of inspiration, take a look at the article by Carter Rabasa, which uses the library to create a Phonestagram application, based on the well-known Instagram site; it's available at https://www.twilio.com/blog/2014/11/phonestagram-fun-with-photo-filters-using-node-hapi-and-camanjs.html.
Note
It's worth noting that CamanJS is able to handle HiDPI images with ease – all we need to do is set the data-caman-hidpi attribute in our code. Caman will automatically switch to using the hi-res version, if it detects that the device supports hi-res images. Note though, that rendering takes longer, due to the additional pixels being used.

Getting really creative

Cast your mind back to the beginning of this chapter, where I mentioned that CSS3 filters provide a convenient and lightweight means of manipulating images. Their use means that we can reduce the amount of work required when editing the images, and that should the images change in size or content, then it is much easier to update them.
However, using CSS3 filters can only go so far – this is where jQuery takes over. To see why, let's work through another demo. This time, we'll use one of the more advanced preset filters that comes with CamanJS, and which would be difficult to achieve if we had to use CSS3 filters alone.
Remember – if you use Chrome, please run this demo from within a local web server, as suggested in the Getting ready section. Let's start:
	For this demo, we need some files from the code download that accompanies this book. They are: caman-advanced.css, caman-advanced.html, caman.full.js, jquery.min.js, and flowers.jpg. Place each file in the relevant subfolders, and the HTML markup file in the root of our project area.
	In a new file, add the following code to configure the CamanJS object to use the pinhole filter supplied with the library; save this as caman-advanced.js within the js subfolder:$(document).ready(function() {
 $("input").on("click", function() {
 Caman("#caman-image", function () {
 this.pinhole().render();
 });
 })
});

	If we preview the demo, we can see that the image now shows a pinhole camera effect when the Change filter button is clicked. Refer to the following image:[image: Getting really creative]

There are plenty of examples of more unusual filters on the CamanJS site. Head over to http://camanjs.com/examples/ to view what is possible using the library.
Although we've concentrated on using CamanJS as our example (partially due to the breadth of what is possible to do with the library), there are other libraries available that offer similar filter functionality, but not all to the same level as CamanJS. Here are some examples to explore, to get you started:
	VintageJS: https://github.com/rendro/vintageJS
	Hoverizr: https://github.com/iliasiovis/Hoverizr
	PaintbrushJS: http://mezzoblue.github.com/PaintbrushJS
	Colorimazer: http://colorimazer.tacyniak.fr/

For those of you who prefer not to use open source, one example that you may like to explore is the JSManipulation library, which is available for sale from the CodeCanyon site at http://codecanyon.net/item/jsmanipulate-jquery-image-manipulation-plugin/428234.
Right, let's move on and really get stuck into something. So far, we've used plugins which will serve most purposes for us. But in some instances, we may find that we need to create our own filters manually, as existing filters are not available for our needs. Let's take a look at a couple in action, to see what is involved.
Tip
To see what is possible when using Caman, take a look at this article by Martin Angelov at http://tutorialzine.com/2013/02/instagram-filter-app/. It takes us through building an Instagram filter application, using jQuery, CamanJS, and the jQuery Mousewheel.

Monitoring the speed of jQuery using Firebug

We can wax lyrical about how critical performance is, but nothing beats seeing it in action and working out how we can improve our code to gain that extra edge. Manually working out where to make the changes is time-consuming and inefficient. Instead, we can avail ourselves of a number of tools to help get a clearer indication of where the issues lie in our code.
There are dozens of tools available to help with benchmarking performance of our pages, which include interactions with jQuery or jQuery-based scripts and plugins. Over the next few pages, we're going to look at a selection of different methods. Let's start with a simple visual check, using Firebug, from http://www.getfirebug.com. Once installed, click on Net | JavaScript, then load your page to get statistics on each plugin or script that is loaded on the page.
In the following image, we can see the results from the Packt Publishing website:
[image: Monitoring the speed of jQuery using Firebug]
In comparison, following is the image showing the results from http://www.jquery.com:
[image: Monitoring the speed of jQuery using Firebug]
Tip
Before loading the page, clear your cache to avoid skewing the results.

Viewing the statistics returned from Firebug gives us a good start, but to get a better indication as to where the bottlenecks are, we need to profile our code. Thankfully, it's a cinch to do with console. Let's take a look at how we can use console to optimize code, using a copy of the tooltipv2.html demo we created in Chapter 11, Authoring Advanced Plugins. For the purpose of this little demo, we will run it from a local web server, such as WAMP:
	From the code download, extract a copy of the tooltip demo folder and store it in the www folder of WAMP.
	In tooltipv2.js, alter the first few lines as shown next – this adds in the call to profile our code:$(document).ready(function() {
 console.profile();
 $('#img-list li a.tooltips').quicktip({

	We need to tell the browser when to stop profiling, so go ahead and alter the code as shown next: })
 console.profileEnd();
});

	In the browser, load tooltipv2.html, and then open Firebug. If all is well, we should see something akin to the following screenshot, where we see the first few lines of the profile report:[image: Monitoring the speed of jQuery using Firebug]

Profiling our site using a tool such as Firebug can be very revealing. To give a flavor of how, imagine if we had added more selectors; some of the figures shown would have been much higher then.
Tip
If you want to focus just on time taken, an alternative to using console .profile() is to use console.time() and console.timeEnd() instead.

There are many more tools available for profiling our sites. Not all are specific to jQuery, but they can still be used to gain insight into how our scripts are performing. Following are a few examples you can try, in addition to the classic sites such as JSPerf.com (http://www.jsperf.com):
	JSLitmus, from http://code.google.com/p/jslitmus/
	BenchmarkJS, available at http://benchmarkjs.com/, or from the NPM site at https://www.npmjs.com/package/benchmark – an example of how to use it is available at https://gist.github.com/brianjlandau/245674
	Online services such as SpeedCurve (http://www.speedcurve.com), or Calibreapp (https://calibreapp.com/)
	FireQuery Reloaded, from https://github.com/firebug/firequery/wiki is coming; note that this is still in beta at the time of writing
	DeviceTiming, from https://github.com/etsy/DeviceTiming

There are definitely plenty of options available – not all will suit everyone's needs; the key though is to understand what you are testing, and learn how to interpret it.
Dave Methin, part of the core team for jQuery, wrote a brilliant article that outlines the dangers of blindly trying to optimize code, without properly interpreting the results from using something such as JSPerf. The developer Fionn Kelleher puts it perfectly when he states that your code should be a work of art – there is no need to optimize everything for the sake of doing so; it is far more important that code should be readable and work well.
Okay – time to move on. We've covered the basics of monitoring, but at the expense of requiring manual effort. A much better option is to automate it. We can use a number of tools to do this with our old friend Grunt, so let's dig in and see what is involved in automating our monitoring.

Distributing or applying patches

Once our patch is completed, we need to distribute it; it is tempting to simply update a version of jQuery and release that with our plugin or use it within our site. There are some disadvantages of using this method though:
	We can't take advantage of our browser's caching capabilities; if we use a cached version of jQuery, then it will either not contain our patched code or pull a fresh copy from the server.
	Patching a copy of jQuery means that we're locked into that version of jQuery. This prevents the end user from being able to use their own version of jQuery, a CDN link, or even a newer version of jQuery (assuming that the patch still works!).
	Allowing a patch to run separately at runtime means that it only patches the objects in the source code; if it goes horribly wrong, then we can drop the patch and still leave ourselves with a clean (unpatched) version of jQuery. Making changes to the source code does not afford us this luxury.

Instead, there are some alternatives that we can use to apply patches:
	We can simply include our patch in a separate file within our plugin or website—this keeps the Core jQuery library clean, although it means a slight overhead of requesting the patch file from the server. Users can then simply link to a copy of the file from runtime and discard if it circumstances change.
	Patches can also be distributed as a Gist—this makes it independent of our site or plugin and allows others to comment or suggest tweaks that can be incorporated into our code.Note
As an example, I've created the following Gist for the replacewebp.js patch—this is available at https://gist.github.com/alibby251/89765d464e03ed6e0bc1 and can be linked into projects as a means of distributing the code:
<script src="https://gist.github.com/alibby251/89765d464e03ed6e0bc1.js"></script>

	We can take this a step further if the patch is available within a GitHub repository—either as part of an existing project or on its own. GitHub will allow users to submit pull requests in order to help improve an existing patch before it is considered for submission to core.
	There is an alternative route that we can take: the patch can be packaged and delivered via a frontend package manager, such as Bower (http://www.bower.io) or Jam (http://www.jamjs.org).Note
For more information on packaging content for download via Bower, please refer to http://bower.io/docs/creating-packages/.

These are some of the options we can use to distribute our patches; using a selection of these means that we can make our patch available to the widest possible audience and hopefully benefit from their testing and feedback!

Categorizing patterns

Now that we've seen the structure of a typical design pattern, let's take a moment to consider the types of patterns that are available. Patterns are usually grouped into one of the following three categories, which are the most important ones:
	Creational patterns: These focus on how we can create objects or classes. Even though this might sound simple (and in some aspects, like common sense), they can be really effective in large applications that need to control the object creation process. Examples of creational patterns include Abstract, Singleton, or Builder.
	Structural design patterns: These focus on ways to manage relationships between objects so that your application is architected in a scalable way. A key aspect of structural patterns is to ensure that a change in one part of your application does not affect all the other parts. This group covers patterns such as Proxy, Adapter, or Façade.
	Behavioral patterns: These focus on communication between objects and include the Observer, Iterator, and Strategy patterns.

With this in mind, let's take a moment to explore some of the more commonly used designs, beginning with the Composite Pattern.
The Composite Pattern

If you've spent time developing with jQuery, how often have you written code similar to this:
// Single elements
$("#mnuFile").addClass("active");
$("#btnSubmit").addClass("active");

// Collections of elements
$("div").addClass("active");

Without realizing it, we're using two instances of the Composite Pattern—a member of the Structural group of patterns; it allows you to apply the same treatment to a single object or a group of objects in the same manner, irrespective of how many items we're targeting.
In a nutshell, when we apply methods to an element, or a group of elements, a jQuery object is applied; this means that we can treat either set in a uniform manner.
So, what does this mean? Let's take a look at a couple of other examples:
// defining event handlers
$("#tablelist tbody tr").on("click", function(event) {
 alert($(this).text());
});
$('#btnDelete').on("click", function(event) {
 alert("This item was deleted.");
});

The beauty of using Composite Patterns is that we can use the same method in each instance but apply different values to each element; it presents a uniform interface to the end user while applying the change seamlessly in the background.
Advantages and disadvantages of the Composite Pattern

Using Composite Patterns can be as simple or complex as we make it; there are advantages and drawbacks to using this pattern, which we should consider:
	We can call a single function on a top-level object and have it apply the same results to any or all of the nodes within the structure
	All the objects in the composite design are loosely coupled, as they all follow the same interface
	The composite design gives a nice structure to the objects, without the need to keep them in an array or as separate variables

There are some drawbacks to using composite patterns; the following are the key ones to be considered:
	We can't always tell whether we're dealing with a single item or multiple items; the API uses the same pattern for both
	The speed and performance of your site will be affected, if the composite pattern grows beyond a certain size

Let's move on and take a look at some more patterns; the next one up is the Adapter Pattern.

The Adapter Pattern

We can use jQuery to switch classes assigned to selectors; in some cases though, this may be an overkill for our needs, or assigning a class to a selector may present issues that we need to avoid. Fortunately, we can use the .css() function to directly apply styles to our elements—this is a great example of using an Adapter Pattern in jQuery.
A pattern based on the Structural design pattern, the Adapter Pattern, translates the interface for an element in jQuery into an interface that is compatible with a specific system. In this case, we can assign a CSS style to our chosen element, using an adapter in the form of .css():
// Setting opacity
$(".container").css({ opacity: 0.7 });

// Getting opacity
var currentOpacity = $(".container").css('opacity');

The beauty of this is that once the style is set, we can use the same command to get the style value.
Advantages and disadvantages of the Adapter Pattern

There are several key benefits of using the Adapter design pattern; the key one being its ability to link two incompatible interfaces, which would otherwise have had to remain independent.
In addition, it is worth making a note of the following additional benefits:
	The Adapter pattern can be used to create a shell around an existing block of code, such as a class, without affecting its core functionality
	This pattern helps makes the code reusable; we can adapt the shell to include additional functionality or modify the existing code if circumstances dictate a need to do so

Using an Adapter Pattern presents some drawbacks, if we're not careful:
	There is a performance cost in using keywords such as .css()—do we really need to use them? Or, can we apply a style class or selector and move CSS styling into the style sheet instead?
	Using keywords, such as .css(), to manipulate the DOM can lead to a performance hit if we have not simplified our selectors and if we've used something like this:$(".container input#elem").css("color", "red");

This likely to not be noticeable on a small site or where such manipulation is only lightly used; it will be noticeable on a larger site!

	Adapter patterns allow you to chain jQuery commands; although this will help reduce the amount of code that needs to be written, it comes with a trade-off in terms of legibility. Chaining commands will make it harder to debug code at a later date, particularly if there is a change in the developer involved; there's something to be said for keeping code simple and clean, if only to help maintain one's sanity!

Let's move on and take another look at another pattern, namely the Façade Pattern.

The Facade Pattern

Originally from French, façade translates as frontage or face—this is a perfect description for this next pattern; its outward appearance can be very deceptive, in just the amount of code that can be hidden!
The Façade Pattern, another member of the Structural group of patterns, provides a simple interface to a larger, more complex body of code; in a sense, it abstracts some of the complexity, leaving us with simple definitions that we can manipulate at will. Notable examples of Façade Patterns are DOM manipulation, animation, and, of course, the perennial favorite, AJAX!
As an example, simple AJAX methods such as $.get and $.post both call the same parameters:
$.get(url, data, callback, dataType);
$.post(url, data, callback, dataType);

These are façades to two more functions in their own right:
// $.get()
$.ajax({
 url: url,
 data: data,
 dataType: dataType
}).done(callback);

// $.post
$.ajax({
 type: "POST",
 url: url,
 data: data,
 dataType: dataType
}).done(callback);

Which in turn are façades to a huge amount of complex code! The complexity in this instance stems from the need to iron out cross-browser differences for XHR and make it a cinch to work with actions, such as get, post, deferred, and promises in jQuery.
Creating a simple animation

At a very simple level, the $.fn.animate function is an example of a façade function in jQuery, as it uses multiple internal functions to achieve the desired result. So, here's a simple demo that uses animation code:
$(document).ready(function() {
 $("#go1").click(function() {
 $("#block1")
 .animate({width: "85%"}, {queue: false, duration: 3000})
 .animate({fontSize: "24px"}, 1500)
 .animate({borderRightWidth: "15px"}, 1500);
 });

 $("#go2").click(function() {
 $("#block2")
 .animate({ width: "85%" }, 1000)
 .animate({ fontSize: "24px" }, 1000)
 .animate({ borderLeftWidth: "15px" }, 1000);
 });

 $("#go3").click(function() {
 $("#go1").add("#go2").click();
 });

 $("#go4").click(function() {
 $("div").css({width: "", fontSize: "", borderWidth: ""});
 });
})

The preceding code will produce this animation effect:
[image: Creating a simple animation]
We can make use of the function shown in the following screenshot within the core library:
[image: Creating a simple animation]
Note
The code for the demo in this section is available in the code download link that accompanies this book, as the animation.html file; you will need to extract the whole code folder for this demo to work correctly.

Now that you've seen the Façade Pattern in use, let's consider some of the benefits of using it in our code.

Advantages and disadvantages of the Façade Pattern

Using the Façade pattern to hide complex code is a really useful technique; in addition to being easy to implement, there are other advantages of using this pattern, as follows:
	Enhances security of your web application
	Works well in combination with other patterns
	Makes it easy to patch internal code
	Provides a simpler public interface to the end user

In contrast to other patterns, there are no real notable drawbacks when using this pattern; it provides a unified set of interfaces to us as end users, so we're not forced to make any compromises. It is worth noting that there is a cost involved in implementation, when abstracting code—this is something that we should always bear in mind when using façade patterns.

The Observer Pattern

Since it is a member of the Behavioral group of patterns, we will already be familiar with this next pattern—if you spend time creating custom events, then you are already using the Observer Pattern.
A key part of developing with jQuery is using its well-established publishing/subscribing system to create custom events—access to these events is possible using .trigger(), .on(), or .off(). We can define Observer Patterns as those patterns where specific objects are subscribed to others and can be notified by them when a particular event takes place:
[image: The Observer Pattern]
For a moment, let's say we have the following HTML:
<div id="div1">This is div 1</div>
<div id="div2">This is div 2</div>

We want the inner <div> elements to trigger an event called customEvent; this will happen when they are clicked on:
$('div').on('click', function(e) {
 $(this).trigger('customEvent');
});

Now, let's make the document element subscribe to customEvent:
$(document).on('custom', function(e) {
 console.log('document is handling custom event triggered by ' +
 e.target.id);
});

When the custom event is triggered by one of the div elements, the observer/subscriber is notified and a message is logged to the console.
Note
For purists, some of you may prefer to use a typical publish/subscribe model—an example is available at https://gist.github.com/cowboy/661855.

Let's consider some of the benefits of using this pattern and where you may need to make allowances in your code in order to avoid falling into some of the traps associated with using this design pattern.
Advantages and disadvantages of the Observer Pattern

Using the Observer Pattern forces us to consider the relationship between the various components of an application, at a far greater level than we might otherwise have been used to considering. It is also great at doing the following:
	Promoting loose coupling in jQuery, where each component knows what it is responsible for and doesn't care about other modules—this encourages reusable code.
	Allowing you to follow the separation of concerns principle; if code blocks are self-contained, they can be reused with little difficulty in new projects. We can then subscribe to single events and not worry about what happens in each block.
	Helping us to pinpoint where the dependencies are within our project, as a potential basis for determining whether these dependencies can be reduced or eliminated altogether with a little effort.

There are drawbacks to using the Observer Pattern though; the key drawbacks are the switching of a subscriber from one publisher to another can be costly in terms of code, and it becomes harder to maintain the integrity of our code.
To illustrate this, let's take a brief look at a simple example, where we can see at least one instance of where we've had to make extra allowances for the switch of publisher.

Creating a basic example

Getting our heads around how the Observer Pattern works is critical; it is one of the patterns that is more in-depth and provides more opportunity than a simple set of protocols, such as the Façade design pattern. With this mind, let's run through a quick working demo to illustrate how it works, as shown here:
	Let's start by downloading and extracting copies of the code for this chapter—we need the observer.html file, along with the css and js folders
	If you run the demo, you should see two labels in red, which you can click; if you try clicking them, you will see the counts increase, as shown in this screenshot:

[image: Creating a basic example]
At this point, let's consider the code—the key functionality is in the observer.js file, which I have reproduced in full here:
$(document).ready(function() {
 var clickCallbacks = $.Callbacks();
 clickCallbacks.add(function() {
 var count = parseInt(this.text(), 10);
 this.text(count + 1);
});
clickCallbacks.add(function(id) {
 $('span', '#last').text(id);
});
$('.click').click(function() {
 var $element = $(this).next('div') .find('[id^="clickCount"]');
 clickCallbacks.fireWith($element, [this.id]);
 });
});

Notice how there is a single event handler for the .click class. We've used a callback here to allow jQuery to execute the next click, even though it may not have finished completing the previous execution. In this instance, it's not going to be too much of an issue, but if we had to update a number of different statements or apply more changes (through the use of additional functions), then the callback will prevent errors from being generated in our code.
Here, we subscribe to the observable, which—in this instance—are the two Click Me statements; the .click event handler allows us to update both the click counts and the Last element clicked statement, without throwing an error.
Note
To learn more about the intricacies of using callbacks in jQuery, you may want to browse through the API documentation, which can be viewed at http://api.jquery.com/jquery.callbacks/.

In the meantime, let's change focus and take a look at a different pattern. We all know that jQuery is famed for its DOM manipulation abilities; up next is the Iterator pattern, which is based on this particular feature of jQuery.

The Iterator Pattern

Now, how many times have you heard, or read, that jQuery is famed for its DOM manipulation? I bet that it's a fair few times and that the .each() keyword is used at some point in those examples.
DOM manipulation in jQuery uses a special variation of the Iterator Pattern, from the Behavioral group of patterns—this is as it sounds; we can use this pattern to traverse (or iterate) through all the elements of a collection, leaving jQuery to handle the internal workings. A simple example of such a pattern might look like this:
$.each(["richard","kieran","dave","alex"], function (index, value) {
 console.log(index + ": "" + value);
});

$("li a").each(function (index) {
 console.log(index + ": " + $(this).text());
});

In both the cases, we've used the .each function to iterate through either the array or each instance of the li selector; there is no need to worry about the internal workings of the iterator.
Our examples contain minimal code, in order to iterate through each selector or class within the page; it's worth taking a look at the amount of code that is behind jQuery.fn.each() function, within the core library:
[image: The Iterator Pattern]
This, in turn, calls the jQuery.each() function—the first one is for internal use only, as shown in the following screenshot:
[image: The Iterator Pattern]
This is then supplemented by a special fast case, that is, for the most common use of the .each() function:
[image: The Iterator Pattern]
Advantages and disadvantages of the Iterator Pattern

The ability to iterate over elements in the DOM is one of the key elements of jQuery—as a critical part of the Iterator pattern; these are some benefits of using this pattern:
	The Iterator pattern hides much of the functionality required to iterate through a collection, without the need to understand the inner workings of the code providing this functionality
	We can use the same consistent pattern to iterate through any object or set of values
	Using the Iterator process can also help to reduce or eliminate typical for loop syntax across our code, making the code easier to read

Unlike other patterns, there are very few disadvantages of using this pattern. It's a key facet of jQuery, so provided it is not abused by having to iterate over an excessive number of objects, this simple pattern will prove to be very useful!

The Lazy Initialization Pattern

Hehe, this sounds like something I might follow on a Sunday morning! Okay, I know that was a terrible joke, but all jokes aside, this creational-based pattern allows you to postpone expensive processes until they are needed.
At its simplest level, we might configure a plugin with a number of different options, such as the number of images to be displayed, whether we should show an overlay, or how each image is displayed. Sounds simple, right? So, where does the lazy initialization part come in? Aha! This is simpler than you might think. Take the example of the following code:
$(document).ready(function(){
 $("#wowslider-container1").wowSlider();
});

Our example used the initialization command for the WOW Slider (available from http://www.wowslider.com)—the key to using this pattern is in the initialization process; it is not fired until the first moment it is needed on our page.
A more complex example of the lazy initialization pattern is a callback; these won't be processed until the DOM is ready:
$(document).ready(function () {
 var jqxhr = $.ajax({
 url: "http://domain.com/api/",
 data: "display=latest&order=ascending"
 })
 .done(function(data)){
 $(".status").html("content loaded");
 console.log("Data output:" + data);
 });
});

We might make use of this example directly in our code; it is more likely that we will use it within a lazy loading plugin, such as the version by Mika Tuupola at http://www.appelsiini.net/projects/lazyload.
Advantages and disadvantages of the Lazy Initialization Pattern

The key benefit of using this design pattern is simple: to delay the loading of expensive resources until they are needed; this helps to speed up access to a site and to reduce bandwidth usage (at least initially).
However, there are some drawbacks of using this method, which include the following:
	It needs careful management by the setting of a flag to test whether the summoned object is ready for use; if not, then a race condition can be generated in multithreaded code
	The prior use of any lazy variable or object will bypass the initialization on the first access principle and mean that we lose any benefit of not loading these large objects or variables
	This method requires the use of a map to store instances so that you get the same instance when you next ask for one with the same parameter as the one previously used
	There is a time penalty involved with using this pattern, if large objects need to be loaded; the pattern only really works if these objects are not loaded initially and if there is a good chance that they will not be used

Ultimately, using this pattern needs some consideration and careful planning; it will work well, provided we've chosen not to load the right objects, so to speak! Talking of strategy, let's move on and take a look at another pattern that helps us determine what will happen when changing states on objects or variables, namely the Strategy Pattern.

The Strategy Pattern

Cast your mind back a few years, when using Flash to animate content on sites was the latest design fad; there were some really well-designed examples, although all too often sites were slow and not always as effective as they should be! Moving forward, CSS animations are preferred now—they don't need a browser plugin to operate, can be stored in a style sheet, and are less resource hungry than Flash.
"Why are we talking about animations?", I hear you ask, when this chapter is about design patterns. That's a good question; the answer is simple, though: some of you may not realize it but animations are a perfect example of our next design pattern. At a basic level, animations are all about changing from one state to another—this forms the basis of the Strategy pattern, from the Behavioral group of patterns.
Also known as the policy or state pattern, the Strategy pattern allows you to select the appropriate behavior at runtime. In a nutshell, this is what the pattern does:
	Defines a family of algorithms (or functions) used to determine what should happen at runtime
	Encapsulates each algorithm (or function) into its self-contained unit and makes each algorithm interchangeable within that family

A good example of where strategy patterns can be used is in the validation of entries in a form—we need some rules in place to determine what is valid or invalid content; we clearly won't know what the outcome will be until that content is entered!
The key point here is that the rules for validation can be encapsulated in their own block (potentially as an object in their own right); we can then pull in the relevant block (or rule), once we know what the user wants us to validate.
At a more basic level, though, there is a simpler example of a strategy pattern; it takes the form of animating content, such as using .toggle(), where we switch from one state to another or back again:
$('div').toggle(function(){}, function(){});

Each resulting state can be set as a class in its own right; they will be called at the appropriate time, once we know what the requested action should be. To help set the context, let's knock up a simple demo in order to see this in action.
Building a simple toggle effect

Okay, granted that this is jQuery 101, but why complicate matters when it shows what we need perfectly?
In this demo, we perform a simple toggle action to show or hide two <p> statements—the key point here is that we don't know what is going to happen next, until the button is pressed.
To see this in action, download a copy of the code folder for this chapter; run the strategy.html demo and then click on Toggle 'em to see the <p> statements appear or disappear, as shown here:
[image: Building a simple toggle effect]
The magic takes place in this function; it's a simple use of the .toggle() command to switch the visibility of each <p> statement as required:
$(document).ready(function(){
 $("button").click(function() {
 $("p").toggle("slow");
 });
});

However, we can easily abstract the function contained in the click event handler into a separate IIFE and then simply call the function in our code, as shown here:
$(document).ready(function(){
 var hideParagraphs = function() {
 $("p").toggle("slow");
 };

 $("button").click(hideParagraphs);
});

The code is already easier to read—we've removed the bulk of the original action away from the event handler; this removes the need to edit the event handler if we need to change the code at a later date.
Note
If you are interested in learning more about IIFEs, then you may want to take a look at Wikipedia's entry for more details, which is available at https://en.wikipedia.org/wiki/Immediately-invoked_function_expression.

Switching between actions

Although we've concentrated on animations in our example, the observant amongst us might be wondering whether the same techniques will apply to commands such as switch(). The answer is yes; we've not discussed it here as it is a pure JavaScript command, but you can apply the same principles as an alternative to use it.

Advantages and disadvantages of the Strategy Pattern

Defining a sensible strategy is the key to successful coding; these are some benefits that we can gain by using the Strategy pattern:
	The code is easier to read; if we abstract functions into their own class, we can move them away from the decision-making process, either as separate blocks of code in the same file or even as separate files in their own right
	The code is easier to maintain; we only need to go to the class to change or refactor the code, and we only need to make minimal changes to the core code in order to add links to new classes or object event handlers
	We can maintain the separation of concerns—each independent class or object that we abstract retains no awareness of the other components, but when provided with each strategy object's responsibility and the same interface, they can communicate with other objects
	Using the Strategy pattern allows you to take advantage of the open/closed principle; the behavior of each abstracted class or object can be altered by initiating a new class or object instance of the existing behaviors

Tip
For more details about the open/closed principle, please refer to http://en.wikipedia.org/wiki/Open/closed_principle.

These are some of the disadvantages that we need to be mindful of, though:
	Use of the Strategy pattern allows you to respect the open/closed principle, but at the same time, you may end up initiating a new class or object of code that contains a lot of unnecessary functions or actions that make your code more cumbersome
	There may be instances where using the Strategy pattern won't suit your purposes; if your code only contains a small number of functions, the effort required to abstract them may outweigh the benefits of doing so
	Using the Strategy pattern will increase the number of objects within our code, making it more complex and potentially requiring more resources to manage

Enough strategizing for the moment; let's move on and take a look at a different protocol, in the form of the Proxy design pattern.

The Proxy Pattern

When working with jQuery, there will be occasions where you might want to write a generic event handler that takes care of managing styles on certain elements—a good example might be switching from active to disabled state, or even selected state; we can then style these using normal CSS.
Using this approach, this is how a generic event handler might look:
$(".myCheckbox").on("click", function () {
 // Within this function, "this" refers to the clicked element
 $(this).addClass("active");
});

At face value, this will work perfectly well, but what if we were to introduce a delay before changing the style class? We would normally use a setTimeOut() function to achieve this:
$(".myCheckbox").on("click", function () {
 setTimeout(function () {
 // "this" doesn't refer to our element, but to the window!
 $(this).addClass("selected");
 });
});

Did anyone spot a small but rather crucial problem here? Passing any function to setTimeout will give you the wrong value—it will refer to the window object, not the object being passed!
A workaround for this is jQuery's proxy() function; we can use this function to implement a Proxy pattern, or a go-between, in order to ensure that the right value is passed through to the .addClass() method in the right context. We can adapt our previous example as shown in the following code snippet:
$(".myCheckbox").on("click", function () {
 setTimeout($.proxy(function () {
 // "this" now refers to our element as we wanted
 $(this).addClass("active");
 }, this), 500);
});

The last this parameter we're passing tells $.proxy() that our DOM element is the value we want this to refer to—in this instance, it's the checkbox and not the window.
Advantages and disadvantages of the Proxy Pattern

Proxy patterns are useful designs from the Structural group, which can help with optimizing and maintaining fast sites; at its core, the pattern is based on the principle of not loading expensive elements until absolutely necessary. (and then ideally not loading at all, if it can be helped!)
There are some benefits we can gain by using this design pattern, as follows:
	We can use a proxy pattern to provide a placeholder for more expensive objects that are yet to be loaded or which may never be loaded; this includes objects that may be loaded from outside the application
	Using a proxy can act as a wrapper, providing delegation to the real object, while also protecting it from undue complexity
	Incorporating proxy patterns into our page can help reduce the perceived slowness or lack of responsive from code-heavy sites

The downsides to using this pattern include the following:
	There is a risk that a proxy pattern can hide the life cycle and state of a volatile resource from its client; this means that the code has to wait until the right resource becomes available again or produces an error. It needs to know that it is interacting with the original resource and not with another resource that may appear similar to the original.
	If we are using proxy patterns to represent a remote resource, this will disguise the use of communication between the two; communication with a remote resource should be treated differently to that of a local one.

With care, proxy patterns can prove very useful, provided we're sensible about what we decide to load or not load into our pages. Let's change tack and look at another design pattern; this one is based on how we may need to construct one or more elements dynamically; this concept is at the core of the Builder Pattern.

Builder Pattern

During the development of any project, there may be occasions where we need to create new elements dynamically; this can range from building a single <div> element to a complex mix of elements.
We might want the flexibility of defining the final markup directly in our code, which can get messy, or we can separate out the elements into a standalone mechanism that allows us to simply build those elements, ready for use later in the code.
The latter, or the Builder Pattern to give it its technical name, is preferable; it's easier to read and allows you to keep a clear distinction between variables and the rest of your code. This particular pattern falls into the Creational group of patterns and is one of the few common examples you will see of this type of pattern.
Note
You may see references to the Abstract Pattern online, or in books—it is very similar in style to the Builder Pattern.

We can use jQuery's dollar sign to build our objects; we can either pass the complete markup for an element, partial markup and content, or simply use jQuery for construction, as shown here:
$('<div class="foo">bar</div>');

$('<p id="newText">foo bar</p>').appendTo("body");

var newPara = $("<p />").text("Hello world");

$("<input />")
 .attr({ "type": "text", "id":"sample"})
 .appendTo("#container");

Once created, we can cache these objects using variables and reduce the number of requests to the server.
It's worth noting that design patterns are not exclusive to script code; they can be applied to plugins using similar principles. We will cover more design patterns for jQuery plugins in Chapter 11, Authoring Advanced jQuery Plugins.
Advantages and disadvantages of the Builder Pattern

Using a builder pattern won't suit all circumstances; it is worth noting the benefits that can be gained by using it in order to see if these will suit your requirements. These benefits include the following:
	We can construct the markup needed to create objects dynamically within jQuery, without the need to explicitly create each object
	We can cache the markup, which can then be separated from the main functionality and which makes it easier to read the code and reduce requests to the server
	The core markup will remain immutable, but we can apply different functions to it in order to alter values or its appearance
	We can go further and turn our Builder pattern into a state machine or a mechanism to expose public methods or events, while still maintaining private constructor or destructor methods

There are some disadvantages of using the Builder pattern; the key disadvantage is the abuse of the use of chaining, but we should also consider the following:
	There is scope to define markup that can't be easily reused; this means that we may need to create a handful of the variables that contain markup, all of which will take resources that should be used elsewhere.
	Take an example of the following code snippet:var input = new TagBuilder("button")
 .Attribute("name", "property.name")
 .Attribute("id", "property_id")
 .Class("btn btn-primary")
 .Html("Click me!");

The use of the Builder pattern allows actions to be chained, provides a consistent API, and follows the Builder pattern. However, the main drawback of this pattern is that it makes the code harder to read and, therefore, harder to debug.

We've explored a number of different design pattern types at a conceptual level; for some, it may still prove difficult to relate this back to what we know as the jQuery Core.
The beauty though is that jQuery uses these patterns throughout—to help put some of what you've learned into practice, let's take a moment to examine the core library and see some examples of how these patterns are used internally.

Summary

Phew! We certainly covered a lot of theory on design patterns; let's take a breather and recap what you've learned throughout this chapter.
We kicked off with an introduction to what design patterns are and how they came about; we then moved on to exploring the benefits of using them and why we should consider using them within our projects.
Next up came a look at the structure of a design pattern, where we broke down a typical design into its different elements and saw what role each element plays in the scheme of the design. We also looked at how to categorize design patterns into different types, namely Creational, Structural, and Behavioral.
We then moved on to take a look at a number of common design patterns, where we went through what each type does and examined some examples of how we will use them. We then looked at the benefits and drawbacks of each of the design patterns covered throughout this chapter, before finishing up with a look at how some of these patterns are actually used within the jQuery library itself, and not just within our own code.
I think that's enough theory for now; let's move on and get practical. In the next chapter, we'll see how to take your form development skills up a notch with some techniques to master form development.

Improving jQuery animations

From the previous section, we can easily see that CSS has a clear advantage when being rendered in a browser—this is despite the somewhat unscientific approach used in the demo!
The key point though is that, what we gain with flexibility and all-round browser support when using jQuery, we lose in speed—jQuery was never designed to be performant when rendering animations.
To help improve performance, there are a couple of plugin options that you can explore:
	Velocity.js: This plugin reengineers $.animate() to provide significantly faster performance and can be used with or without jQuery; this includes IE8. The plugin can be downloaded from http://julian.com/research/velocity/. This also contains some preregistered effects—we will cover more on creating custom-easing effects later in this chapter.
	jQuery-animate-enhanced: This plugin detects and reengineers animations to use native CSS transitions automatically, for WebKit, Mozilla, and IE10 or greater. It can be downloaded from http://playground.benbarnett.net/jquery-animate-enhanced/.

We can go further and delve into using jQuery to be notified when an animation has completed, using the transitionend event. While this may not stop the original issue with an animation queue build-up, using jQuery will allow you to separate animation effects from your jQuery logic.
Note
For an interesting article and demo on using transitionend (and its vendor-prefixed versions), take a look at an article on the Treehouse website, at http://blog.teamtreehouse.com/using-jquery-to-detect-when-css3-animations-and-transitions-end.

Now that we've seen how we can make our animations smoother, let's move on and take a look at how we can generate custom animations; the theory being that we can put some of our knowledge to create more complex and interesting animations, while at the same time, reduce some of the issues we see with running the queue.
However, before we do so, I want to leave you with two useful tips when it comes to improving your animations:
	Have a look at http://blog.teamtreehouse.com/create-smoother-animations-transitions-browser; it explores some of the issues we encounter with animations and transitions and how these affect performance
	The article at http://developer.telerik.com/featured/trimming-jquery-grunt/ explores how we can trim our version of jQuery, to remove functionality that is not needed (and consequently reduce the load on the server when running animations)

Let's take a look at designing these custom animations, beginning with an initial look at using easing functions.

